US009276959B2

a2 United States Patent (10) Patent No.: US 9,276,959 B2
Theimer et al. 45) Date of Patent: Mar. 1, 2016
(54) CLIENT-CONFIGURABLE SECURITY 8,359,596 B2 1/2013 Kobayashi et al.
OPTIONS FOR DATA STREAMS 8,386,631 B2 2/2013 Nilsson et al.
8,386,771 B2 2/2013 Baker et al.
. . 8,463,633 B2 6/2013 Jung et al.
(71) Applicant: Amazon Technologies, Inc., Reno, NV 8.488.661 B2 7/2013 Mefon ot al.
(Us) 8,543,746 B2 9/2013 Roever
8,578,000 B2 11/2013 Van Wie et al.
(72) Inventors: Marvin Michael Theimer, Bellevue, 8,775,282 B1* 7/2014 Ward, Jr. HO4L 41/0896
WA (US); Gaurav D. Ghare, Seattle, 705/34
X . 2007/0086351 Al* 4/2007 Noble HO04B 17/0085
WA (US); John David Dunagan, 370/244
Redmond, WA (US); Greg Burgess, 2007/0250835 Al 10/2007 Kobayashi et al.
Seattle, WA (US); Ying Xiong, Seattle, 2008/0155676 Al* 6/2008 Johnsonetal. 726/13
WA (US) (Continued)
(73) Assignee: éjnsla)lzon Technologies, Inc., Reno, NV FOREIGN PATENT DOCUMENTS
WO 0122682 3/2001
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
US.C. 154(b) by 32 days. International Search Report and Written Opinion in PCT/US14/
(21) Appl. No.: 14/077,158 65046, Date Mailed Jul. 23, 2015, Amazon Technologies, Inc., pp.
.No.: s
1-15.
(22) Filed: Now. 11, 2013 (Continued)
(65) Prior Publication Data . .
Primary Examiner — Josnel Jeudy
US 2015/0135255 Al May 14, 2015 (74) Attorney, Agent, or Firm — Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
(51) Imt.ClL
HO4L 12/40 (2006.01)
HO4L 29/06 (2006.01) 67 ABSTRACT
HO4L 29/08 (2006.01) A configuration request comprising a security option selected
(52) US.CL for aparticular data stream is received. Nodes of a plurality of
CPC HO4L 63/20 (2013.01); HO4L 67/1004 functional categories, such as a data ingestion category and a
(2013.01); HO4L 67/1027 (2013.01) dataretrieval category are to be configured for the stream. The
(58) Field of Classification Search security option indicates a security profile of a resource to be
CPC oo HO4L 29/06687; HO4L 12/40117 used for nodes of at least one functional category. In accor-
See application file for complete search history. dance with the configuration request, a node of a first func-
tional category is configured at a resource with a first security
(56) References Cited profile, and configuration of a node of a second functional

U.S. PATENT DOCUMENTS

7,386,586 Bl
8,230,009 B1*

6/2008 Headley et al.
7/2012 Wongetal.ccoeeee 709/203

category is initiated at a different resource with a different
security profile.

22 Claims, 31 Drawing Sheets

Receive request o create data siream 1701

to

mapping, Indluding, 6.9,

1704

iy periion

Determine el setof nodes ofingestion, storage, and refrieval subsystem,
.9, vith respective numbers of nodes based on parton mapping, expected
ingeston and rerevalrees, durablly ecuirements, aveilabity oritera ec
77

)

Recaive, at

dta
eg. incluting

record submission interfaces, that resultn as

in-ing or by-reference
ignments of tmestamp-bassd
pran)

¥

 of a set of ’
interaces, eg.,inclucing non-sequentel access inerfaces (e, gelReoord
or 113

]

tod

, pors of
o reeved)for programmati ingeston and refreval intefaces 1716

¥

Optionally,

pect bo

‘mefrics and respeciive lling ales for dfferentinterfaces 1719

US 9,276,959 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0313682 Al* 12/2008 Kajiura ..o 725/93
2009/0125362 Al 5/2009 Reid et al.

2010/0142542 Al 6/2010 Van Wie et al.

2012/0265890 Al 10/2012 Carlson et al.

2013/0067109 Al* 3/2013 Dongetal. ... 709/231
2014/0089023 Al* 3/2014 Zhu ... GO06Q 30/06
705/7.11

OTHER PUBLICATIONS

U.S. Appl. No. 14/136,624, filed Dec. 20, 2013, Marvin Michael
Theimer.

U.S. Appl. No. 14/136,645, filed Dec. 20, 2013, Marvin Michael
Theimer.

U.S. Appl. No. 13/942,618, Carl Bellingan, filed Jul. 15, 2013.
Alejandro Abdelnur, “Oozie Specification, a Hadoop Workflow Sys-
tem,” Oct. 8, 2010, retrieved from http:/rvs.github.com/oozie/re-
leases/2.2.1/ WorkftowFunctionaiSpec.html on Feb. 11, 2013. pp.
1-37.

Ani I Pillai and Alejandro Abdelnur, “Oozie Coordinator Specifica-
tion,” Oct. 8, 2010., retrieved from http:/rvs.github.com/oozie/re-
leases/2.2.1 /CoordinatorFunctionaiSpec.html on Feb. 11, 2013. pp.
1-43.

“Oozie—Design,” retrieved from http:/rvs.github.com/oozie/de-
sign.html on Feb. 11, 2013. pp. 1-2.

“Quartz Scheduler 2.1.x Documentation,” retrieved from http://
quartz-scheduler.org/files/documentation/Quartz-2.1 x-Documenta-
tion.pdfon Feb. 11, 2013. pp. 1-140.

U.S. Appl. No. 13/764,716, filed Feb. 11, 2013, Kathryn Marie Shih
et al.

U.S. Appl. No. 13/764,711, filed Feb. 11, 2013, Kathryn Marie Shih
et al.

U.S. Appl. No. 61/738,967, filed Dec. 18, 2012, Kathryn Marie Shih
et al.

U.S. Appl. No. 13/465,944, filed May 7, 2012, Jonathan 8. Corley et
al.

U.S. Appl. No. 13/465,978, filed May 7, 2012, Jonathan 8. Corley et
al.

U.S. Appl. No. 13/476,987, filed May 21, 2012, Jacob Gabrielson et
al.

Apache Kafka, “A High-Throughput Distributed Messaging Sys-
tem”, pp. 1-42, Oct. 8, 2013.

Amazon Web Services, “Amazon Simple Queue Service (Amazon
SQS)”, pp. 1-5, Oct. 8, 2013.

Apache Software Foundation, “Hadoop Streaming”, pp. 7-17, 2008.
SIGMOD Record, “Parallel Data Processing with MapReduce: A
Survey”, Kyong-Ha Lee, et al., pp. 11-20, Dec. 2011.

Splunk Inc., “Splunk for Application Management”, pp. 1-2, 2012.

GitHub, “Rationale”, pp. 1-2, Oct. 8, 2013.

GitHub, “Tutorial”, pp. 1-8, Oct. 8, 2013.

U.S. Appl. No. 14/077,173, Marvin Michael Theimer, filed Nov. 11,
2013.

U.S. Appl. No. 14/077,171, Marvin Michael Theimer, filed Nov. 11,
2013.

U.S. Appl. No. 14/077,167, Marvin Michael Theimer, filed Nov. 11,
2013.

U.S. Appl. No. 14/077,162, Marvin Michael Theimer, filed Nov. 11,
2013.

* cited by examiner

U.S. Patent

(o

Stream 10

Data
producer

1208

Data

producer
120A

Mar. 1, 2016 Sheet 1 of 31
(9|
L)
(7]
©
(1]
(]
o
g | §
] e
(14
= =z
S w
g | 8
=] e
8 =
3 73]
g | 8
=] e
[2]
= =
S 73]
3 | 8
=] e
s =
S w
L =
g |E2 =
= g =¥ o
S Vo [m)]
g g€ S
a |» 5 =
= Q
2‘—
8
(1]
o

Writes 151

|

£ «
833
DC\—

8

|

£ «
2328
DC\—

(=]

(&)

US 9,276,959 B2

FIG. 1

US 9,276,959 B2

Sheet 2 of 31

Mar. 1, 2016

U.S. Patent

*

P LTI IS LR S I L L L LR LY X P

4

02c WasAsqgns [0Nu02 S4S

Qg ebeys
Buissenoid

JGT¢ ebejs
Buissenoid

06z weishs
Buissaooid weans

LY Y L Yy

gGl¢ abejs
Buissaooid

¥Gi¢ abeys
Buissano.d

‘-.....----......

L4

oafecccsscsssessccsscsenssssna,

o " eesccccccssssssccss

LA A LR R RS R R R R LEE L L LR R L LT 1 2

¢ 9Old

01¢ wasAsqns [0u0a SNS

30z waishsgns
[BASLISY

“ccccsssscscscsccserssscsssasccssssssccsassscsssssassccscsssescaccccaa”

0c wajsAsgns
abeioig

08¢ (SINS) wayshs
Juswabeuew

weans

T0z wajshsgns
uonsabu

a0¢l
Jaonpoud

BleQ

40¢l
Jaonpoud

eeq

YOcZl
Jaonpoud

eeQ

U.S. Patent

)

e® T Ceccmccsccccncnncana,

Mar. 1, 2016 Sheet 3 of 31

US 9,276,959 B2

SPS clients 375

SPS clients invoke SPS interfaces

[e

SPS programmatic interfaces 305

createStreamProcessingStage(inputStream, IdempotentOperations, outputPolicy,

recoveryPolicy),

initializeWorkerNode(processingStage),
saveCheckpoint(processingStage, workerProcess),

setOutputDistribution(processingStage, outputStreamList, outputPartitioningPolicy)

linkStages(sourceStage, destinationStage)

create ThirdPartyConnector(sourceStage,destinationThirdPartySystemSpec)

4

Ceccocsccccscoscscccscccaa”’

‘coscasssssccncsscccccscsaccnnacsssesssscsssscenencenaasen -’

SPS invokes SMS
interfaces as lower-
level operations 352

SMS programmatic
interfaces 307

createStream()
deleteStream()
getStreaminfo()
putRecord()
getlterator()
getNextRecords()
repartitionStream)

SMS interfaces
invoked directly 354

SMS clients 370

FIG. 3

‘cosscscsascsascssccssenss

US 9,276,959 B2

Sheet 4 of 31

Mar. 1, 2016

U.S. Patent

. 0]0]74
b 'Ol S
0T esie nuaw [ealydels
| I%h
19 spou Aojod Aisnooal —_
aoss abRI0)g L0155 LA g6y Aued pg 01 10199UU0D
e !
3 abejs Buissaoig

767 weans |eiswaydy
5y forjod | - |
65y WaisAs K1aA0934 paseq
Buisssaoud uiody23y0 YIm

Aued pg abe1s Buissa00.d

T

<
]

%

.

TSF Wealis aISsIe] | s |

T

8ABS 87 0]

% a2
é _— llll
57 Cey

~]
—

o0

(152

N _ TOF ease ubisap ydeio
Cl¥y

N
~—

*§)da0u0d Weals uo [euoIn) B 1o} 3134 IO PUE ‘S|IEIdN 20w UJes| 0} [sued nusw Su ul Suod|

au Jo Aue uo Y110 'sadlnles abelols Jo swiajsAs Buissanoid Aled pliy 0] S10}08UU0D 818310 OS|R UBD NOA 8310yd JnoA Jo sapijod Buluonnied jusiayip
yum ‘ol NoA 11 sweans sjeIpawsiul Jusisisiad o [el1swsyds 918849 0] 9500UD UBD NoA “sjie1op uonesado sy Buusiue pue uodt sbels sy uo Bunjalo Aq
abeys e je pawloyad aq o) suonesado Buissaooid aup a1edipu| "sabels InoA Jo yoea Joj s|ielap uonngusip indino ay Aloads pue wesns indul sy} 8sooy)

0% — i|o0) uoneaso abeys Buissaooid Weans ay) 0) SUWOD[SAA

/<aWeudNsSqams//:sdny

US 9,276,959 B2

Sheet 5 of 31

Mar. 1, 2016

U.S. Patent

PLITIELE LYY Y Y P

PRI R L L R L L R P R R R L LRI LR R L L L LT Y L P

4

[4
L]
.
]
]
]
]
.
.
.
.
.
.
.
.
]
.
.
.
.
]
.
]

1

omecessssssnsaa,

L4

(spiooayixeniab “Ba)
258G saoelaul
[eAsuyal |enuanbag

L4

‘coacassccasacas

o memecaamasansaa,

"asccsscscccscccscscccnas

.

(p1ooayyeb ‘10jesR)106
“6'9)
T8G seoeuajul [EABU}B)
[enuanbas-uoN

L)

“neccsscccasccer

5C SeORMAUI [BASL)RI ONBLULUE)

td

L

=

g ol

Cd-S uoniped Joj TOZG Sspou ¥

| d-¢S uoniHed 10} MO¢G S8pou HS|

€d-1.S UORRIEd 10} D0OCG SOPOU S|

Zd-|S uoniued 1o} 0CG sepou Y|

Ld-1S uonied Joj ¥0zG sepou
(MS1) lersuay/ebeloig/uonsabul

Boig

TG S99BLISIUI UONSS

i
S
o
(]

8905 Joyedipul
a9ualeaud
Buousnbas

paiiddns

-Jusip [euondo

------------------'

avos Aoy
uonied paiddns
-Jusi [euondo

|

T0G ssaippe eleq

d10g
«¢S» d] Weals

/905 Jojedlpul
2ouaigjaud
Buousnbas

paiiddns

-Jusijo [euondo

Vi0G Aoy
uoned paiddns
-Jusi [euondo

<0G Ejep aul|

V10G
.S, @l weans

Bul anewwe.boid

US 9,276,959 B2

Sheet 6 of 31

Mar. 1, 2016

9 Old

U.S. Patent

waishsgns uonsabu

[]

' Biieintdi i [it]

! ¢+ ZGgsopiod — ' 059 sepiod

m m 13y UOnSeBu m 099 Sapou [041u0D uonsabu| m BLILOnEG m

[] cTreesTesessesw loososoosoooad

" . < % W% "t

H \\ l" " = l'

: ‘ |

m r\ 705 Aeiq

: S S Ul SNS
wajsAsqns < : 0809 spou 0909 @pou
abelo)s 0] H pus-yoeg pug-JuoI ~o7T

1

: 89IN0S

1 .

: A

]

[] —_—
wasAsgns ' g809 epou g909 epou _ 209 Aeiqy
abeio)s 0] < ._ pus-yoeg pPUS-JuoI4 09 Julo SINS

' (s)hoinquisip

' peo| docl

' pus-juci4 Jsonpoid

: Ble(

1

[]

1

:

: oo B 209 Areaq

wejsAsqns < : V809 epou V909 epou
abeloys 0| H pus-yoeg PUS-1UOIS JUsIP SINS

[]

m (4}

! Jaonpoid

: ¥0¢ Bleq

1

]

US 9,276,959 B2

Sheet 7 of 31

Mar. 1, 2016

U.S. Patent

ez sel0d

"~
[]
[]
{ 9ousjsIsiad

08Z Sapou [01u0d abeIoig

wa)sAsqns

leasiye) o [T

3.0/ edljdal
ddxsip-uo

9¢

0/ 8pou abelio)g

g.0. eoljdsl
daXsip-uo

wajsAsgn

V.0/ edljdal
4d %sip-uo

/4 "Old

{0l 1 ¥a &d-+S

I—AU)

|eAsl}al O

wa)sAsgns

D011 ¥a 2d€S

[eAsI}Rl O _.A

wajsAsqns A

gG0Z eoldal
¥ Aowsw-u|

3Z0Z epou abeia)g

VG017 ealdal
yq Aowsw-y|

gz07 epou sbeio)s

Sl """"""T""'""" ""'"'T"""" SooTeeees

g011 ¥d ed-¢S

[eAsl)al 0]

¥0¢ wayshsgns abeio)s

V¥0Z ealjder
¥ Alowst-uj

YZ0Z epou abeio)g

.‘--------------

YOIl ¥d bd-LS

800 sspou

uonsabu|

US 9,276,959 B2

Sheet 8 of 31

Mar. 1, 2016

U.S. Patent

OC} SJawnsuoo e1ep Jayio 0]

A

GBg Sepou [0u0d §dS

Z@seood 1
Aianodaijienojie ¢ '
]

g senod
Juiodyoayn

89 SSpOoU |0JU0D [eASLIaY

(2d
-9S ‘9d-6S) MO¥8
Spou JISNIOM

qc1¢ obers Buissesoid

/T

o5 eyweong | [

0¢08 9pou [eASIISY

aroseueona | [

d¢08 Spou [eAslISY

(£d-¥S) GOVS
3pOu JISNIOM

(Gd-¥S) YOrs
3pOu JISNIOM

VGl ¢ obels Buissasoig

AN

—i)

062 (SdS) wayshs Buissaooid weass

V08 8Y2ed 4d

-t

V¢08 3poU [eA3LISY

G0z Wa)sAsqns [easwey

' 8 Oid
:

[}

L}

[}

[}

L}

[}

1

L}

H

' MZ0Z apou
! abring
H

H

+ | NOIT ¥Q 2d+S
:

[}

[}

L}

[}

1

!

[}

L}

H

1| WOIT ¥Q 4d-9S

:

L}

H

' V20 8pou
! sbeio)g
L}

H

¢« | T0FI ¥ased-ss
:

1

[}

[}

[}

H

| SIOTT ¥d 6d-¥S

[}

US 9,276,959 B2

Sheet 9 of 31

Mar. 1, 2016

U.S. Patent

PO e A L L L L e L L e e R I L R R R R R R LR L L R L L LY 2N

6 '

]
sa10d Jano|ie} '

apou o5juoy *

smoccccncncnca,

L4

AL L R R LRI L LR LR LR AR RS R R L YL L X L L R L L LT X TN

[iabebedabdeb
5
! sopjjod Janojey '
2 9POU [ersujey !

P I LR L R R L R L R R L e L L L R L L L R IR LR L L R R L L L L N

. --e -
v
{ Selljod Jenojiey s
1 8pou sbeio)s ¢

smesscssanscasa,

[4

LT
! s319110d JanojIey :
+ 5pou uonssbu ¢

semescscascass,

L

6 Ol

d0t6 spou
[ersma) Alewnd-uoN

(Md-IS uonmied 10 GEE HY 8poU [0JU0D

YOy6
apou [oJuod Arewnd

d0g6 spou
[eralnal Alewud-uoN

(4d-Is uomued 10)) Tz DY 8pou [ersLIsy

YOE6
3pOU [eAsiIa) Alewild

90¢6 spou
abeioys Arewnd-uoN

(1d-Is uonned 10} TTE Y spou abeio)s

Ly L L T P P Y T R Y Y R e Y L Y Y Y Y Y Y Y P Y Y T Y ad

Y0c6
apou abeli0)s Arewud

g016 spou
uonsabul Arewnd-uoN

Y016
apou uonsabur Arewd

(Md-Is uonnJed 1o1) G056 (9y) dnoib Aouepunpas spou uonsabuj

.-----------"

L]

L4

‘coscccancasane

4

’

L 4

»

US 9,276,959 B2

Sheet 10 of 31

Mar. 1, 2016

U.S. Patent

0807 89I1M8S ¥007

000
(s)eo1ni3s obeIOIS

7101 29138
Bunndwos [enuip

70T SINGQ anjea-Aoy
gouewlopad-ybiH

9101
90IAISS B|0SUCD S§dS

8101
80IAJS 3J0SU0D SINS

¢00| Jomjsu J8pIrcid

CLLI T e L L L L L L L L LI L L e L L LT

dciol oY

PLEL YL I

]
]
]
[]
]
]
]
]
.
]
]
[]
[]
]
]
ala

I I L x)

Fecccospecaponcana
A
]
]
[}
'
]
]
]
]
]
]
[}
'
]
]
L

PLLLL L IS

A= =ceesqecsspesess

Lecescccsacennns

LI IEEEEY Y Y XY Py

g¢l0l O

LYY T Y 24

i
-

.
]
]
]
[]
]
-d
.
v
v
.
]
]
]
]
.
.
v
.
]
]
]
]
.
.
v
v
.
]
]
]
]
[]
[]
[]
[]
[]
[]
[}
]
[]
[]
[]
[]
[]
[]
[}
(]
1

VEOOT Joulejuod Ajjiqe|ieny

'
L]
L]
'l
L)
"o
L)
[
') o '
i v VZior(od) ¢
H m%o_m@cmvc:cmm_"
b oo
[}
asool Jswsd ereq 05001 Jswsoeleq |3 m 95001 Jsjua9 eleg Y500} Jsjus ejeq
P
'
D007 gcoo} v)
HIRY

Jauieluoo Ajjigelieay

Toeoesseesssereeesw®

Jauleuoo Ajljige|ieny

Toowssesseecerbdecwd

X TR R PR YRR IR R R R R L Y]

csssrcscccscensnsscsccscccnsnaa’

.-......-

AR L L R R R R L LR P R R R PR R R R R L L R R L L Y L L R P L L R R L L R R L R A P L L L R L L R LY X g

U.S. Patent Mar. 1, 2016 Sheet 11 of 31 US 9,276,959 B2

Provider network 11 f

5 1oz
: '
: ST eenenoTeneneneTenTTET .‘. :
' + Placement destination type A ! :
] v H]
H]]
H E Multi-tenant instance hosts 1103 (e.g., for virtual compute E E
: . instances, storage instances, or DB instances)] H
E L g g g -t :
' :
Pt L L L L AL LI L LI L LR L L LI L LI L -~ '
E s Placement destination type B H E

] e]
[} (] (]
E ’ Single-tenant instance hosts 1104 ' E

[] s]
M o e D D R B D D A M S R R AR AR A M M e ma * .
H Placement destination type C E

[}
E l' ------------------------ ’A~\' 1'-\ ------------------------ ~‘. E
' E Isolated virtual network (IVN) 1106A ! E Isolated virtual network (IVN) 1106B ¢ '
: “ -------------------------- -'. .‘ -‘. :
: '
N J
1 Unshared dedicated L
PO bbbl LN - | Placement destination
" Shared internet > link 1176
i e G
e auen ¢ Client facility 1110B <%
[}

Placement destination

S W

] Client facility 1110A E ', type F
L}

: Host 1160 ;

: | SMSiibraries 1171 | ;

]

]]

i | [CsPstoraies iz]| %

L}

1]

Placement destination type D

FIG. 11

U.S. Patent Mar. 1, 2016

Sheet 12 of 31

SPS security option request
1200

| StageID(s)1210 |

SPS control nodes
placement destination
type (PDT) 1212

SPS worker nodes PDT
1214

Encryption settings 1216

FIG. 12a

SMS security option request
1250

| StreamID(s)1252 |

Ingestion nodes PDT
1254

Ingestion control nodes
PDT 1256

Storage nodes PDT 1258

Storage control nodes
PDT 1260

Retrieval nodes PDT
1262

Retrieval control nodes
PDT 1264

Encryption settings 1266

FIG. 12b

US 9,276,959 B2

U.S. Patent

Mar. 1, 2016

Data record 110
(with optional
requested minimum
sequence number)

Sheet 13 of 31

US 9,276,959 B2

Ingestion subsystem

Data producer 120

204

Sequence number
102

FIG. 13a

Sequence number length = (n1+n2+n3+n4) bits (e.g., n1=4, n2=44, n3=64, n4=16 bits)

n1-bit SMS version
number 1302

n2-bit timestamp/
epoch value 1304

n3-bit subsequence
number 1306

n4-bit partition number 1308

\ Sequence number 102

FIG. 13b

US 9,276,959 B2

Sheet 14 of 31

Mar. 1, 2016

U.S. Patent

vl Old

0] asuodsal ul pauinial sy

(£=SpI0oSYWNNXEW ‘ |I0JeIs)|=J0Jels)l) SPIodayIXaN1eh

A
((g9g=NSuess)I01eIE) 180
101201 | ¥Q YIm Se)s) LiojeIs)]
868=NS 098=NS 1/8=NS 7/8=NS G/8=NS 9/8=NS
vorteeq | gorT eea | DOFT Ma | TOW wa | 01T MA@ 3017 ¥a

N

1d-IS uoniued jo spiooal elep paio)s-Ajenuanbag

US 9,276,959 B2

Sheet 15 of 31

Mar. 1, 2016

U.S. Patent

40251
(shsoy Buissasoid

G0SGT (spanios
Buissanoid

goeglt
(s)epou

JoYIoM

ZSd obess
Buissasoid

VOeGl
(S)epou

v0.Gl Y0GGE (Shewniss
(shsoy Buissanoid Buissaooig
gocl GYSI

(shsoy [enaay

(s)anias |ersulay

Joyiom
1Sd abes
Buissaooid

GZGT (s)apou

IS

0¢ST (s)apou

0951 OvS1
(shsoy sbeinrg (shianias abeiolg
GGG agsl

(shsoy uonsabuy

-

(s)anias uonsabuy

sbeioig

GIGF (s)epou

-

SIS0y [eoIshlyd «-—

S80UBSU|
INdWoo/SNAT

-

uonsabu

$98$9904d
/spesiyy WArP

Gl old

T0ST
Buiddew uoniuey
T1GT obuer Aupiea NS/dwesswn [euondo
— 2051
0sh - g anquie/iey
UopRd 4 | smcccccaaaay
v uonped Y
H 9051 '
y (Sluopounj 3
y buddew
»uonyed
tecceccccead
5651

< syopeusws|dwl

gjdwex3

US 9,276,959 B2

Sheet 16 of 31

Mar. 1, 2016

U.S. Patent

Buwonnied-ai sudsap paydnusjuiun
senunuod Buissssoid pue [easial ‘ebeios ‘uonsabul ¥g

9t "Old

[8]
¢l 1L
awl]
-
uonssbul Jo} asn ul ZiNd
‘(1senbai |ersuyal Aq peredipul dweysswun uo paseq “ba) esnul LNd

‘sleAsL)al 10J 8sn Ul ZINd pue LINg sbuiddew uonnied | Buiddew uonsed _

9M ‘9d ‘98 9l 9d Sley, d0L1Hd LM = Jayiom ld Sy, 00114Q

abeys Buissaooid
GM ‘GY ‘GS ‘Gl &d g, 001 1dd 1Y = leAsuisy ld Jng, ga0l14d
‘18 = abeloyg
g e ‘11 = uonsabuj
M P S T vd S0, d0114d ld QllY, volldd
SAl SPON (i uoniied | A9y uonied arya SR @l uonied | Asy uoniled arda
Z1 = dwejsswin yes sbues Ajpiep |1 = dweysswi vels sbuel Aupiea
dhd pouoyed HAid pejesio/pezIEnUI

-al | S weang

1S weslls

U.S. Patent Mar. 1, 2016 Sheet 17 of 31 US 9,276,959 B2

Receive request to create data stream 1701

v

Determine partition mapping, including, €.g., function(s) to be applied to
selected data record attributes and/or partition keys to identify partition
1704

l

Determine initial set of nodes of ingestion, storage, and retrieval subsystem,

e.g., with respective numbers of nodes based on partition mapping, expected

ingestion and retrieval rates, durability requirements, availability criteria efc.
1707

Y

Receive, at ingestion subsystem, data records submitted via any of a set of
programmatic ingestion interfaces, e.g., including in-line or by-reference
record submission interfaces, that result in assignments of timestamp-based
sequence numbers to stream data records based on ingestion times 1710

Y

From retrieval subsystem, provide contents of data records in response to
retrieval requests received via any of a set of programmatic retrieval
interfaces, e.g., including non-sequential access interfaces (e.g., getRecord
or getlterator) and sequential access interfaces (e.g., getNextRecords) 1713

!

Collect usage metrics (e.g., invocation counts, numbers of records ingested
or retrieved) for programmatic ingestion and refrieval interfaces 1716

Y

Optionally, determine billing amounts (e.g., asynchronously with respect to
the record submissions and retrievals) based at least in part on usage
metrics and respective billing rates for different interfaces 1719

FIG. 17

U.S. Patent Mar. 1, 2016 Sheet 18 of 31 US 9,276,959 B2

Implement programmatic interfaces enabling clients to configure SPS
processing stages, e.g., to specify (a) one or more processing operations to
be performed on stream data records by worker nodes according to a
partitioning policy at a particular processing stage, and (b) an optional output
distribution specification for results of the idempotent operations 1801

'

Receive an indication of an operation Op1 to be performed at processing
stage PS1 on data records of stream S1 with partitioning policy PPol1, with
results to be distributed based on descriptor DDesc1 1804

'

Determine number of worker nodes to be instantiated at PS1, e.g., based on
PPol1, complexity of Op1, and/or performance capabilities of worker node
resources 1807

v

Configure worker nodes to (a) receive data records from S1 retrieval nodes
(b) perform Op1 on data records (c) optionally, e.g., based on recovery policy
for PS1, store progress records/checkpoints indicating which set of partition
records have been processed and (d) transmit output to destinations
indicated by DDesc1 (e.g., as inputs to intermediate persistent or ephemeral
streams, or directly to other processing stages or storage systems) 1810

'

Initiate processing at worker nodes 1813

'

Monitor health status and metrics of worker nodes 1816

FIG. 18a

U.S. Patent Mar. 1, 2016 Sheet 19 of 31 US 9,276,959 B2

Provide SPS client library that enables (a) clients to select, register with an
SPS managed service, or specify desired properties of, worker nodes at
which stream processing operations of one or more SPS stages are to be
performed (b) client-configurable settings for SPS control-plane operations,
such as the extent of worker node health monitoring to be performed by the
SPS managed service 1851

'

Receive an indication of a particular SPS stage PS1 for which a particular
client intends to use SPS client library for worker node configuration, and the
stream(s) Sk whose data is to be consumed by PS1 1854

A 4

Optionally, receive an indication of control-plane settings, such as monitoring
functions to be performed by SPS managed service, for PS1 1857

l

Determine SMS and/or SPS nodes to be configured for PS1 1860

Provide data records from Sk to worker nodes of PS1 in response to retrieval

requests, and perform control-plane operations (if any) for PS1 requested by
client 1863

FIG. 18b

U.S. Patent Mar. 1, 2016 Sheet 20 of 31 US 9,276,959 B2

Determine that a worker node is in an unhealthy/unexpected/overloaded state
1901

'

Identify/instantiate replacement worker node 1904

Best-effort recovery
policy in use for stage ?
1907

Yes

No (strict checkpoint-based recovery
policy is in use)

Provide indication of location at which replacement worker node can retrieve
progress records stored by replaced worker node 1910

'

Replacement worker node retrieves most-recent progress record, repeats
idempotent operations on set of DRs indicated as not yet processed by progress
record 1913

Y

Replacement worker node processes additional data records of S1 as they are
retrieved 1916

FIG. 19

U.S. Patent Mar. 1, 2016 Sheet 21 of 31 US 9,276,959 B2

Implement programmatic interfaces enabling clients to select from among
various security options for their data streams, e.g., (a) placement options for
nodes of different functional categories such as ingestion/storage/retrieval/
control/processing or (b) encryption protocols for data records 2001

'

Receive an indication, via one of the programmatic interfaces, that for a
specified stream S1, nodes of a functional category FC1 are to be
instantiated using resources with a first security profile (e.g., at one or more
data centers of the provider network), while nodes of functional category FC2
are to be instantiated using resources with a different security profile (e.g.,
at a facility external to the provider network) 2004

'

Initiate configuration of nodes of the various functional categories based on
selected security profiles and/or locations, e.g., FC1 nodes at selected
resources within provider network, and FC2 nodes at external facility using
provided libraries 2007

v

Optionally, configure encryption modules at one or more sets of nodes 2010

v

Activate nodes of the different functional categories to start stream data
record collection, storage, retrieval, and/or processing 2013

FIG. 20

U.S. Patent Mar. 1, 2016 Sheet 22 of 31 US 9,276,959 B2

Determine a partitioning policy to be used for data records of a stream, with
the policy comprising (a) an initial mapping of data records to partitions based
on supplied partition keys and/or one or more other attributes of the data
records and (b) one or more repartitioning policies/criteria for the stream
2101

'

Determine partitions to which various received data records belong, based on
record attributes or partition keys, and select the appropriate nodes of the
SMS subsystems accordingly 2104

l

Generate respective sequence numbers for received data records, e.g.,
based on relative order in which records of a partition are received 2107

v

At storage nodes selected based on partitions, store records in order of
sequence numbers, e.g., using sequential writes to disk devices 2110

Y

In response to request for ordered reads of multiple records, provide the
records ordered by sequence number, e.g., using sequential reads from disk
devices 2113

FIG. 21

U.S. Patent Mar. 1, 2016 Sheet 23 of 31 US 9,276,959 B2

Determine that a stream is to be repartitioned dynamically, e.g., based on (a)
overload conditions detected at ingestion, storage, retrieval, control, or
processing nodes, (b) workload asymmetries detected, (c) received
repartitioning requests, (d) changes in stream data durability requirements,
(e) a scheduled software/hardware version change, (f) a detection of a
changed stream usage pattern, (g) an estimated pricing impact of
repartitioning, or (h) a determination of a performance target 2201

'

Determine initial timestamp value (e.g., epoch-based value) to be used for
sequence numbers subsequent to repartitioning 2204

l

Generate modified partition mapping, e.g., with new partitioning function and/
or new sets of nodes for ingestion, storage, retrieval, control or processing
2207

!

Optionally, generate and store efficient combined data structure representing
both the original and the modified mapping (e.g., as a directed acyclic graph
in which each entry contains an indication of a partitioning function output
range and a validity time range, so that only the records corresponding to
modified partitions need to be altered as a result of a repartitioning) 2208

Y

Configure nodes to implement modified mapping; retain nodes that use
previous mapping for at least some time period to handle read requests
whose responses may require previous mapping 2210

Y

Determine, whether for a particular read request, the specified sequence
number corresponds to the previous mapping or the modified mapping, and
obtain the requested records based on the appropriate mapping 2213

FIG. 22

U.S. Patent Mar. 1, 2016 Sheet 24 of 31 US 9,276,959 B2

Implement programmatic interfaces enabling clients to select a record
ingestion policy for a data stream from among several ingestion policy
options, including for example (a) an at-least-once policy in accordance with
which a record submitter is to submit a record one or more times until a
positive acknowledgement is received after the record has been successfully
stored or (b) a best-effort ingestion policy in accordance with which
acknowledgements are not provided for at least some record submissions
2301

l

Receive a request indicating ingestion policy selected for a particular data
stream 2304

'

Instantiate ingestion nodes to receive data records of respective partitions of
the particular data stream 2307

i

Receive one or more submissions of the same data record 231

No (best-effort ingestion policy is in
use)

At-least-once
ingestion policy in use?
2313

Yes

Save record only once at storage subsystem; after record has been saved,
send acknowledgements for each submission to submitter 2316

Save record at storage subsystem without sending an acknowledgement
2319

'

Optionally, determine billing amounts based on selected ingestion policy
2322

FIG. 23

U.S. Patent Mar. 1, 2016 Sheet 25 of 31 US 9,276,959 B2

Implement programmatic interfaces enabling clients to select a persistence
policy for stream data records from among a plurality of persistence policies
that differ from each other in (a) number of replicas to be saved (e.g., N-
replica vs. 2-replica vs. single-replica) (b) storage type (e.g., rotating
magnetic disk vs. SSD vs. RAM) and/or (¢) resilience to large-scale failures
(e.g., multi-data-center vs. single-data-center) 2401

l

Receive a request indicating persistence policy selected for a particular data
stream 2404

!

Determine ingestion nodes to receive data records of respective partitions of
the particular data stream, and storage nodes to store data records in
accordance with selected persistence policy 2407

l

Receive a data record at an ingestion node 241

l

Save data records at selected storage nodes in accordance with persistence
policy 2413

l

Optionally, determine billing rates in accordance with persistence policy
2416

FIG. 24

US 9,276,959 B2

Sheet 26 of 31

Mar. 1, 2016

U.S. Patent

G¢ Old

eesecccscccsscccncccsnccenaay

] []
] []
[] (]
] [] I T |
. []
] []
[] []
(] []
. .
] []
] []
= [! - s o=
] []
. : —
' =55 4 10¥5¢
(gcliz A\%\ 2POU JSHIOM
obejs Joj) 0SSz [4 m
a|/qe) Juswubisse | & '
uonmed Aiu/.nl —— M0¥Gc
A 3pOU JSYIOM .
: m TGTz obes Buisssooly
[]
[] []
: :
[] []
“ "
! ! e
[] []
: " —
- : q0v5e /
i G950 4| epoussyom [T
[]
(velz ; m
obeys Joy) Y055C | ' o
a|qe) Juswubisse .“ ooz m 300U JYIOM
uoRhEd 1 SBJM/SpES) §
H ad . Gl ¢ abejs Buissaooid
“ "
02GC eoInes aseqeleq 4 m 0652 SdS 104U00-PazIenusssq
{]

FGE e

ceesvecsreeeseew
v

55¢

S|[e9 [BASLI)RI PI0OSY

)
Y

SPSC

ecwaﬁc_v Vihe
s||ed ojujwealgieb

s,

T0¢ Wa)sAsqns [easlIal SIS

PV NN

n

[}

[}

[}

Vm Otz woisAsgns jouoco SNS 8
' '

. H

US 9,276,959 B2

Sheet 27 of 31

Mar. 1, 2016

U.S. Patent

(aAn0€) G

(Buuonniedal
0} NP PSOId)

(aAno€) €4

9¢ Ol4
paubisseun Sd
S3NUIW G ISB] JOAD L L0501
SINUIL/PASSa00Id SpI00aI O 10'72:65:10-10-980-€10¢ €M ¢d
S3NUILL G ISB| JOAD G700 L0-05(1o
SINUILLPaSSB0id SPICO3I OIS £616:¢0:¢0-10-980-€10¢ LM ¢d
(swn-uonesyipow-jse| “69) _—
5555 = 819¢ Al epou s
¢C9¢ 101E0IPUI [9A] PEOIYIOA 0¢9¢ JoJom paubissy ¥19¢ {1 uonied
JOJBDIPUI Y)[BSL 3POU ISYIOM .

(sAno€) 2d

0%5¢

a|qe) 1uswubisse

uonied

(Buuonniedai
0] 8np pasop) |Ld

CO¢ WaisAsqns

[0u00 SINS
18 11| uonied

U.S. Patent Mar. 1, 2016 Sheet 28 of 31 US 9,276,959 B2

Initialize partition assignment table PAT1 at database service for decentralized-
control SPS stage SP1, e.g., when stage is initialized as a result of a client library
component invocation; create respective unassigned entries for input stream
partitions {P1, P2...} 2701

'

Initialize initial set of worker nodes {W1, W2...}, e.g., at compute instances within
provider network, or at client facility; grant worker nodes read/write access to PAT1

2704

W1 accesses PAT1, determines that P1 is
unassigned 2707

'

W1 updates P1 entry in PAT1 (e.g., using
conditional write operation supported at
database service) to assign P1 to W1
2710

| v

W2 accesses PAT1, determines that P1 is

W1 retrieves P1 records using SMS assigned to W1, but P2 is unassigned (or
retrieval subsystem interfaces, performs | |that worker node currently assigned to P2
processing operations 2713 is inactive/unhealthy) 2716

'

W2 updates P2 entry in PAT1 to assign
P2 to W2 2719

'

W2 retrieves P2 records using SMS
retrieval subsystem interfaces, performs
processing operations 2722

FIG. 27

U.S. Patent

Mar. 1, 2016 Sheet 29 of 31

US 9,276,959 B2

During initialization, and/or based on triggering conditions such as the closing of its
input partition, worker node W1 submits request (e.g., getStreaminfo) to SMS control j«——
subsystem to determine input stream’s active partition list 2801

No

Discrepancy between partition
assignment table and SMS-provided active
partition list? 2807

Yes

W1 inserts/deletes entries on partition assignment table to
resolve discrepancy 2810

Y

If W1 does not already have enough partitions assigned, W1
selects set of partitions on which to perform processing
operations and updates partition assignment table
accordingly 2813

'

W1 retrieves records of the assigned partitions, performs
processing operations, e.g., without having to interact with
SMS control plane or insert/delete rows in partition
assignment table, as long as partition remains open for
retrieval operations 2816

FIG. 28

U.S. Patent Mar. 1, 2016 Sheet 30 of 31 US 9,276,959 B2

Worker node W1 determines (e.g., based on reaching a threshold resource utilization
level or other triggering conditions) that a load balancing analysis is to be performed |«
2901

'

W1 examines workload level indicators in partition assignment table to determine balance
metrics, €.9., to determine average workload level of worker nodes of the stage, number
of partitions assigned on average to each worker node, etc. 2904

W1 workload is below
minimum-load threshold T1? 2907

No

W1 identifies busier worker node Wk from which to offload a partition Pm 2910

\
W1 initiates/requests assignment of Pm to W1, e.g., by modifying entry (or requesting a
modification of an entry) in partition assignment table 2913

W1 workload is above
maximum-load threshold T2? 2916

W1 identifies one of its assigned partitions Pn to relinquish 2919
W1 modifies partition assignment table to indicate that Pn is no longer assigned to W1
2922

A

L W1 performs processing operations on partitions assigned to W1 2925

FIG. 29

U.S. Patent Mar. 1, 2016 Sheet 31 of 31 US 9,276,959 B2

Computing device

9000
Processor Processor Processor
9010a 9010b e 9010n

; ; ;

/0 interface 9030

System memory 9020 Network interface

Code Data 9040
9025 9026 T

Other device(s)
9060

FIG. 30

US 9,276,959 B2

1

CLIENT-CONFIGURABLE SECURITY
OPTIONS FOR DATA STREAMS

BACKGROUND

As the costs of data storage have declined over the years,
and as the ability to interconnect various elements of the
computing infrastructure has improved, more and more data
pertaining to a wide variety of applications can potentially be
collected and analyzed. For example, mobile phones can gen-
erate data indicating their locations, the applications being
used by the phone users, and so on, at least some of which can
be collected and analyzed in order to present customized
coupons, advertisements and the like to the users. The analy-
sis of data collected by surveillance cameras may be useful in
preventing and/or solving crimes, and data collected from
sensors embedded at various location within airplane
engines, automobiles or complex machinery may be used for
various purposes such as preventive maintenance, improving
efficiency and lowering costs.

The increase in volumes of streaming data has been accom-
panied by (and in some cases made possible by) the increas-
ing use of commodity hardware. The advent of virtualization
technologies for commodity hardware has provided benefits
with respect to managing large-scale computing resources for
many types of applications, allowing various computing
resources to be efficiently and securely shared by multiple
customers. For example, virtualization technologies may
allow a single physical computing machine to be shared
among multiple users by providing each user with one or
more virtual machines hosted by the single physical comput-
ing machine, with each such virtual machine being a software
simulation acting as a distinct logical computing system that
provides users with the illusion that they are the sole operators
and administrators of a given hardware computing resource,
while also providing application isolation and security among
the various virtual machines. Furthermore, some virtualiza-
tion technologies are capable of providing virtual resources
that span two or more physical resources, such as a single
virtual machine with multiple virtual processors that spans
multiple distinct physical computing systems. In addition to
computing platforms, some large organizations also provide
various types of storage services built using virtualization
technologies. Using such storage services, large amounts of
data can be stored with desired durability levels.

Despite the availability of virtualized computing and/or
storage resources at relatively low cost from various provid-
ers, however, the management and orchestration of the col-
lection, storage and processing of large dynamically fluctu-
ating streams of data remains a challenging proposition for a
variety of reasons. As more resources are added to a system
set up for handling large streams of data, for example, imbal-
ances in workload between different parts of the system may
arise. If left unaddressed, such imbalances may lead to severe
performance problems at some resources, in addition to
underutilization (and hence wastage) of other resources. Cli-
ents may also be concerned regarding the security of their
streaming data, or the results of analyzing streaming data, if
such data or results are stored at facilities that the clients do
not control. The failures that naturally tend to occur with
increasing frequency as distributed systems grow in size, such
as the occasional loss of connectivity and/or hardware failure,
may also have to be addressed effectively to prevent costly
disruptions of stream data collection, storage or analysis.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 provides a simplified overview of data stream con-
cepts, according to at least some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 provides an overview of the flow of data among
various subcomponents of a stream management system
(SMS) and a stream processing system (SPS) comprising a
collection of stream processing stages, according to at least
some embodiments.

FIG. 3 illustrates examples of respective sets of program-
matic interfaces that may be implemented at an SMS an SPS,
according to at least some embodiments.

FIG. 4 illustrates an example web-based interface that may
be implemented to enable SPS clients to generate graphs of
stream processing stages, according to at least some embodi-
ments.

FIG. 5 illustrates examples of programmatic record sub-
mission interfaces and record retrieval interfaces that may be
implemented at an SMS, according to at least some embodi-
ments.

FIG. 6 illustrates example elements of an ingestion sub-
system of an SMS, according to at least some embodiments.

FIG. 7 illustrates example elements of a storage subsystem
of'an SMS according to at least some embodiments.

FIG. 8 illustrates example elements of a retrieval sub-
system of an SMS and examples of interactions of the
retrieval subsystem with an SPS, according to at least some
embodiments.

FIG. 9 illustrates examples of redundancy groups that may
be set up for nodes of an SMS or an SPS, according to at least
some embodiments.

FIG. 10 illustrates a provider network environment in
which the nodes of a given redundancy group may be distrib-
uted among a plurality of data centers, according to at least
some embodiments.

FIG. 11 illustrates a plurality of placement destinations that
may be selected for nodes of an SMS or an SPS, according to
at least some embodiments.

FIGS. 12a and 125 illustrate examples of security option
requests that may be submitted by SPS clients and SMS
clients, respectively, according to atleast some embodiments.

FIG. 13a illustrates example interactions between a stream
data producer and an ingestion node of an SMS, according to
at least some embodiments.

FIG. 135 illustrates example elements of a sequence num-
ber that may be generated for an ingested data record at an
SMS, according to at least some embodiments.

FIG. 14 illustrates examples of ordered storage and
retrieval of stream data records at an SMS, according to at
least some embodiments.

FIG. 15 illustrates an example of a stream partition map-
ping and corresponding configuration decisions that may be
made for SMS and SPS nodes, according to at least some
embodiments.

FIG. 16 illustrates an example of dynamic stream reparti-
tioning, according to at least some embodiments.

FIG. 17 is a flow diagram illustrating aspects of operations
that may be performed to support respective sets of program-
matic interfaces for stream record ingestion and stream
record retrieval, according to at least some embodiments.

FIG. 18a is a flow diagram illustrating aspects of opera-
tions that may be performed to configure stream processing
stages, according to at least some embodiments.

FIG. 186 is a flow diagram illustrating aspects of opera-
tions that may be performed in response to invocations of
components of a client library for configuration of stream
processing worker nodes, according to at least some embodi-
ments.

US 9,276,959 B2

3

FIG. 19 is a flow diagram illustrating aspects of operations
that may be performed to implement one or more recovery
policies for stream processing, according to at least some
embodiments.

FIG. 20 is a flow diagram illustrating aspects of operations
that may be performed to implement a plurality of security
options for data streams, according to at least some embodi-
ments.

FIG. 21 is a flow diagram illustrating aspects of operations
that may be performed to implement a partitioning policy for
data streams, according to at least some embodiments.

FIG. 22 is a flow diagram illustrating aspects of operations
that may be performed to implement dynamic repartitioning
of data streams, according to at least some embodiments.

FIG. 23 is a flow diagram illustrating aspects of operations
that may be performed to implement an at-least-once record
ingestion policy for data stream records, according to at least
some embodiments.

FIG. 24 is a flow diagram illustrating aspects of operations
that may be performed to implement a plurality of persistence
policies for data streams, according to at least some embodi-
ments.

FIG. 25 illustrates an example of a stream processing sys-
tem in which worker nodes of a processing stage coordinate
their workloads using a database table, according to at least
some embodiments.

FIG. 26 illustrates example entries that may be stored in a
partition assignment table used for workload coordination,
according to at least some embodiments.

FIG. 27 illustrates aspects of operations that may be per-
formed by worker nodes of a stream processing stage to select
partitions on which to perform processing operations, accord-
ing to at least some embodiments.

FIG. 28 illustrates aspects of operations that may be per-
formed by worker nodes of a stream processing stage to
update a partition assignment table based on information
obtained from a stream management service control sub-
system, according to at least some embodiments.

FIG. 29 illustrates aspects of load balancing operations that
may be performed by worker nodes of a stream processing
stage, according to at least some embodiments.

FIG. 30 is a block diagram illustrating an example com-
puting device that may be used in at least some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled in the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed descrip-
tion thereto are not intended to limit embodiments to the
particular form disclosed, but on the contrary, the intention is
to cover all modifications, equivalents and alternatives falling
within the spirit and scope as defined by the appended claims.
The headings used herein are for organizational purposes
only and are not meant to be used to limit the scope of the
description or the claims. As used throughout this application,
the word “may” is used in a permissive sense (i.e., meaning
having the potential to), rather than the mandatory sense (i.e.,
meaning must). Similarly, the words “include,” “including,”
and “includes” mean including, but not limited to.

DETAILED DESCRIPTION

Various embodiments of methods and apparatus for man-
aging the creation, storage, retrieval, and processing of large-
scale data streams designed to handle hundreds or even thou-
sands of concurrent data producers and data consumers are
described. The term “data stream”, as used herein, refers to a

10

15

20

25

30

35

40

45

50

55

60

65

4

sequence of data records that may be generated by one or
more data producers and accessed by one or more data con-
sumers, where each data record is assumed to be an immu-
table sequence of bytes. A stream management service (SMS)
may provide programmatic interfaces (e.g., application pro-
gramming interfaces (APIs), web pages or web sites, graphi-
cal user interfaces, or command-line tools) to enable the
creation, configuration and deletion of streams, as well as the
submission, storage and retrieval of stream data records in
some embodiments. Some types of stream operations (such as
stream creation or deletion, or the kinds of dynamic reparti-
tioning operations described below) that involve interactions
with SMS control components may be referred to as “control-
plane” operations herein, while operations such as data record
submissions, storage and retrievals that typically (e.g., under
normal operating conditions) do not require interactions with
control components may be referred to herein as “data-plane”
operations. Dynamically provisioned sets of compute, stor-
age and networking resources may be used to implement the
service in some such embodiments, based for example on
various partitioning policies that allow the stream manage-
ment workload to be distributed in a scalable fashion among
numerous service components, as described below in further
detail. The acronym SMS may be used herein to refer to a
stream management service, and also to a stream manage-
ment system comprising the collection of virtual and/or
physical resources used to implement a stream management
service.

Some customers of the SMS may develop applications that
directly invoke the SMS programmatic interfaces in various
embodiments. In at least some embodiments, however, in
addition to the SMS interfaces, a higher-level abstraction or
application-level processing framework may be provided for
customers, which may simplify various aspects of stream
processing for those clients that do not wish to develop appli-
cations using the lower-level stream management functions
supported directly by the SMS. Such a framework may pro-
vide its own programmatic interfaces (built, for example, on
top of'the SMS interfaces), enabling customers to focus more
on the business logic to be implemented using stream records
than on lower-level stream management operations. The
higher-level framework may be implemented as a stream
processing service (SPS) with its own control-plane and data-
plane components in some embodiments, which may provide
advanced functionality such as automated resource provi-
sioning for stream processing, automated failovers of pro-
cessing nodes, the ability to construct arbitrary stream pro-
cessing workflow graphs, support for ephemeral streams,
dynamic repartitioning based on workload changes or other
triggering conditions, and so on. In at least some embodi-
ments, either the stream management service, the stream
processing service, or both services, may be implemented as
multi-tenant managed network-accessible services in a virtu-
alization environment. That is, various physical resources
(such as computer servers or hosts, storage devices, network-
ing devices and the like) may at least in some cases be shared
among streams of different customers in such embodiments,
without necessarily making the customers aware of exactly
how the resources are being shared, or even making a cus-
tomer aware that a given resource is being shared at all.
Control components of the managed multi-tenant stream
management and/or processing managed services may
dynamically add, remove, or reconfigure nodes or resources
being used for a particular stream based on various applicable
policies, some of which may be client-selectable. In addition,
the control components may also be responsible for transpar-
ently implementing various types of security protocols (e.g.,

US 9,276,959 B2

5

to ensure that one client’s stream application cannot access
another client’s data, even though at least some hardware or
software may be shared by both clients), monitoring resource
usage for billing, generating logging information that can be
used for auditing or debugging, and so on. From the perspec-
tive of clients of the managed multi-tenant service(s), the
control/administrative functionality implemented by the ser-
vice(s) may eliminate much of the complexity involved in
supporting large-scale streaming applications. In some sce-
narios, customers of such multi-tenant services may be able to
indicate that they do not wish to share resources for at least
some types of stream-related operations, in which case some
physical resources may be designated at least temporarily as
being single-tenant for those types of operations (i.e., limited
to operations performed on behalf of a single customer or
client).

A number of different approaches may be taken to the
implementation of SMS and/or SPS control-plane and data-
plane operations in various embodiments. For example, with
respect to control-plane operations, in some implementations
aredundancy group of control servers or nodes may be set up.
The redundancy group may include a plurality of control
servers, of which one server is designated as a primary server
responsible for responding to administrative requests regard-
ing various streams, while another server may be designated
to take over as the primary in the event of a triggering condi-
tion such as a failure at (or loss of connectivity to) the current
primary. In another implementation, one or more tables cre-
ated at a network-accessible database service may be used to
store control-plane metadata (such as partition maps) for
various streams, and various ingestion, storage or retrieval
nodes may be able to access the tables as needed to obtain the
subsets of metadata required for data-plane operations.
Details regarding various aspects of the SPS and the SMS
data-plane and control-plane functionality in different
embodiments are provided below. It is noted that in some
embodiments in which a stream management service is
implemented, a stream processing service providing higher-
level primitives may not necessarily be implemented. In other
embodiments, only high-level programmatic interfaces of a
stream processing service may be exposed to customers, and
lower-level stream management interfaces used by the may
not be made available to clients.

According to some embodiments, a stream management
system may comprise a plurality of independently config-
urable subsystems, including a record ingestion subsystem
primarily responsible for obtaining or collecting data records,
a record storage subsystem primarily responsible for saving
the data record contents in accordance with applicable per-
sistence or durability policies, and a record retrieval sub-
system primarily responsible for responding to read requests
directed at the stored records. A control subsystem may also
be implemented in some embodiments, comprising one or
more administrative or control components responsible for
configuring the remaining subsystems, e.g., by dynamically
determining and/or initializing the required number of nodes
for each of the ingestion, storage and retrieval subsystems at
selected resources such as virtual or physical servers. Each of
the ingestion, storage, retrieval and control subsystems may
be implemented using a respective plurality of hardware and/
or software components which may collectively be referred
as “nodes” or “servers” of the subsystems. The various
resources of an SMS may thus be logically said to belong to
one of four functional categories: ingestion, storage, retrieval
or control. In some implementations, respective sets of con-
trol components may be established for each of the other
subsystems, e.g., independent ingestion control subsystems,

30

35

40

45

50

6

storage control subsystems and/or retrieval control sub-
systems may be implemented. Each such control subsystem
may be responsible for identifying the resources to be used for
the other nodes of the corresponding subsystem and/or for
responding to administrative queries from clients or from
other subsystems. In some implementations, pools of nodes
capable of performing various types of SMS and/or SPS
functions may be set up in advance, and selected members of
those pools may be assigned to new streams or new process-
ing stages as needed.

Stream partitioning policies and associated mappings may
be implemented in at least some embodiments, e.g., to dis-
tribute subsets of the data records between different sets of
ingestion, storage, retrieval and/or control nodes. For
example, based on the partitioning policy selected for a par-
ticular data stream as well as on other factors such as expec-
tations of record ingestion rates and/or retrieval rates, a con-
trol component may determine how many nodes (e.g.,
processes or threads) should be established initially (i.e., at
stream creation time) for ingestion, storage and retrieval, and
how those nodes should be mapped to virtual and/or physical
machines. Over time, the workload associated with a given
stream may increase or decrease, which (among other trig-
gering conditions) may lead to repartitioning of the stream.
Such re-partitioning may involve changes to various param-
eters, such as the function to be used to determine a record’s
partition, the partitioning keys used, the total number of par-
titions, the number of ingestion nodes, storage nodes or
retrieval nodes, or the placement of the nodes on different
physical or virtual resources. In at least some embodiments,
the repartitioning may be implemented dynamically without
interrupting the flow of the data records, using techniques
described below in further detail. Different partitioning
schemes and repartition-triggering criteria may be used for
different data streams in some embodiments, e.g., based on
client-provided parameters or on heuristics of the SMS con-
trol nodes. In some embodiments, it may be possible to limit
the number and/or frequency of reparations, e.g., based on
client preferences, the expected lifetime of a stream, or other
factors.

A number of different record ingestion policies and inter-
faces may be implemented in different embodiments. For
example, in some embodiments, clients (e.g., executable
components or modules configured to invoke the program-
matic interfaces of the SMS on behalf of customers of the
SMS) may utilize either in-line submission interfaces, or
by-reference submission interfaces. For in-line submissions,
the contents or body ofthe data record may be included as part
of the submission request in such embodiments. In contrast,
in a by-reference submission request, an address (such as a
storage device address, a database record address, or a URL
(Uniform record Locator)) may be provided from which the
contents or body of the data record can be obtained. In some
implementations, a hybrid submission interface may also or
instead be supported, in which up the first N bytes of the data
record may be included in-line, while the remaining bytes (if
any) are provided by reference. In such a scenario, short
records (whose bodies are less than N bytes long) may be
fully specified by the submission request, while portions of
longer records may have to be obtained from the correspond-
ing address.

In addition to the different alternatives for specitying
record contents during ingestion, in some embodiments a
variety of acknowledgement or de-duplication related inges-
tion policies may also be implemented. For example, for
some stream applications, clients may wish to ensure that
each and every data record is ingested reliably by the SMS. In

US 9,276,959 B2

7

large distributed stream management environments, packets
may be lost, or various failures may occur from time to time
along the path between the data producers and the ingestion
nodes, which could potentially result in some submitted data
being lost. In some embodiments, therefore, an SMS may
implement an at-least-once ingestion policy, in accordance
with which a record submitter may submit the same record
one or more times until a positive acknowledgement is
received from the ingestion subsystem. Under normal oper-
ating conditions, a record may be submitted once, and the
submitter may receive an acknowledgement after the receiv-
ing ingestion node has obtained and stored the record. If the
acknowledgement is lost or delayed, or if the record submis-
sion request itself was lost, the submitter may resubmit the
same data record one or more times, until eventually an
acknowledgement is received. The ingestion node may, for
example, generate an acknowledgement for each submission,
regardless of whether it is a duplicate or not, based on an
expectation that the record would not be resubmitted if an
acknowledgement had already been received by the submit-
ter. The ingestion node may, however, be responsible in at
least some embodiments for recognizing that the same data
record has been submitted multiple times, and for avoiding
storing new copies of the duplicate data unnecessarily. In one
embodiment, at least two versions of an at-least-once inges-
tion policy may be supported—one version (which may be
termed “at-least-once ingestion, no-duplication™) in which
the SMS is responsible for de-duplicating data records (i.e.,
ensuring that data is stored at the SMS storage subsystem in
response to only one of a set of two or more submissions), and
one version in which duplication of data records storage by
the SMS is permitted (which may be termed “at-least-once,
duplication-permitted”). The at-least-once, duplication-per-
mitted approach may be useful for stream applications in
which there are few or no negative consequences of data
record duplication, and/or for stream applications that per-
form their own duplicate elimination. Other ingestion poli-
cies may also be supported, such as a best-effort ingestion
policy in which acknowledgements are not required for every
data record submitted. The loss of a few data records may be
acceptable if a best-effort ingestion policy is in effect in at
least some embodiments. Clients may select which ingestion
policies they wish to use for various streams in various
embodiments.

With respect to the storage of stream records, a number of
alternative policies may also be supported in at least some
embodiments. For example, a client may be able to choose a
persistence policy from among several supported by the SMS,
which governs such aspects of record storage as the number
of copies of a given data record that are to be stored, the type
of storage technology (e.g., volatile or non-volatile RAM,
rotating disk-based storage, solid state devices (SSDs), net-
work attached storage devices, and the like) to be used for the
copies, and so on. For example, if a client selects an N-replica
persistence policy to disk-based storage, a data record sub-
mission may not be considered complete until N copies of the
record have been safely written to N respective disk devices.
In at least some embodiments in which disk-based storage
devices are used, the SMS storage subsystem may attempt to
write incoming data records of a given partition sequentially
to disk, e.g., to avoid the performance impact of disk seeks.
Sequence numbers may be generated for (and stored with)
data records using various techniques as described below,
including for example timestamp-based techniques that
enable ordered record retrieval based on ingestion times. Data
records of a given partition may be stored together, e.g.,
contiguously on disk, and separately from the data records of

25

30

35

40

45

55

8

other partitions in at least some embodiments. In some imple-
mentations, in accordance with a retention policy (selected by
a client or by the SMS) or a de-duplication time window
policy (indicating the time period, subsequent to a submission
of any given data record, during which the SMS may be
required to ensure that no duplicates of that given data record
are stored in the SMS storage subsystem, even if some dupli-
cates are submitted), at least some data records may be
archived to a different types of storage service and/or deleted
after a time period from the SMS. Such removal operations
may be referred to herein as stream “trimming”. Clients may
submit stream trimming requests in some embodiments, e.g.,
notifying the SMS that specified data records are no longer
needed and can therefore be deleted from the perspective of
the client submitting the trimming request, or explicitly
requesting the deletion of specified data records. In scenarios
in which there may be multiple clients consuming the data
records of a given stream, the SMS may be responsible for
ensuring that a given record is not deleted or trimmed prema-
turely, before it has been accessed by all the interested con-
sumers. In some implementations, if there are N data con-
sumers of a given stream, before deleting a given record R of
the stream, he SMS may wait until it has determined thatall N
data consumers have read or processed R. The SMS may
determine that R has been read by all the consumers based on
respective trimming requests from the consumers, for
example, or based on respective indications of how far within
the stream the data consumers have progressed. In some
embodiments, some types of data consumers (such as testing-
related applications) may accept the deletion of at least a
small subset of data records before they have been accessed.
Accordingly, applications may be able to notify the SMS
regarding the acceptability of data deletion prior to retrieval in
at least some embodiments, and the SMS may schedule dele-
tions in accordance with the notifications. In some embodi-
ments, an archival policy may be implemented, e.g., as part of
the data retention policy, indicating for example the types of
storage devices to which stream data records should be cop-
ied, and the scheduling policies to be used for such copies.
In at least some embodiments, a plurality of programmatic
interfaces may also be supported for record retrieval. In one
embodiment, an iterator-based approach may be used, in
which one programmatic interface (e.g., getlterator) may be
used to instantiate and position an iterator or cursor at a
specified logical offset (e.g., based on sequence number or
timestamp) within a partition of a stream. A different pro-
grammatic interface (such as getNextRecords) may then be
used to read a specified number of data records sequentially
starting from the current position of the iterator. The instan-
tiation of an iterator may in effect allow a client to specify an
arbitrary or random starting position for record retrieval
within the stream partition. If a client wishes to read data
records in a random access pattern in such an embodiment,
the client may have to repeatedly create new iterators. In
rotating disk based storage systems, disk seeks required for
frequent random accesses may impact /O response times
significantly. Accordingly, as an incentive to clients to read
stream data records sequentially rather than randomly, differ-
ent (e.g., higher) billing rates may be applied to random read
accesses than are applied to sequential read accesses in at
least some embodiments. Thus, for example, a client may be
billed X currency units per getlterator call, and Y currency
units per record retrieved via getNextRecords, with X>Y in
some implementations. When alternative client interfaces are
supported for other operation categories (such as ingestion),
in at least some embodiments the billing rates or prices for the
alternatives may also differ—e.g., a client may be charged

US 9,276,959 B2

9

more for a by-reference submission request than for an online
submission request, just as a client may be charged more for
random reads than for sequential reads. Other factors may
also influence billing in various embodiments, such as the
sizes of the data records, the distribution of write versus read
requests over time, the persistence policies selected, and so
on.

According to some embodiments, a stream processing ser-
vice (SPS) may allow clients to specify arbitrarily complex
processing workflows comprising numerous processing
stages, in which the output of the processing performed at a
given stage may be used as input for zero or more other stages.
Partitioning policies (similar to those described for the SMS
for ingesting, storing and retrieving data records) may be used
to divide the processing workload among a plurality of
worker nodes at various stages in some embodiments. In one
such embodiment, programmatic SPS interfaces may be
implemented enabling clients to specify various configura-
tion settings for any given stage, including for example the
input data source(s) for the stage (e.g., one or more streams
from which data records are to be retrieved, together with the
partitioning policies for the streams), the processing opera-
tions to be performed at the stage, and a descriptor or speci-
fication for output or result distribution from the stage (e.g.,
whether the output is to be saved to storage locations, sent to
a network endpoint, or fed into one or more other processing
stages in the form of a different stream). In at least some
embodiments, the processing operations specified for an SPS
stage may be idempotent: that is, if a given processing opera-
tion is performed multiple times on the same input data, the
result of the operation does not differ from the result that
would have been obtained if the operation were performed
just once. Recoveries from failures (e.g., a worker node fail-
ure at an SPS stage) may be simplified if the processing
operations are idempotent, as described below in further
detail. According to some embodiments, non-idempotent
processing operations may be permitted at some or all SPS
stages.

Based at least in part on configuration information such as
the input stream partitioning policies and then nature of the
processing operations received via the SPS programmatic
interfaces, in various embodiments SPS control servers may
determine how many worker nodes are to be set up initially
for various stages of a processing workflow. The performance
capabilities of the resources to be used for the worker nodes
(e.g., the virtual or physical machines being used) may also be
taken into account when determining the initial number and
placement of the worker nodes. The selected number of
worker nodes (which may in some implementations each
comprise an executable thread or an executable process) may
be instantiated. Each worker node may be configured, for
example, to obtain data records from the appropriate input
sources (e.g., from retrieval nodes of one or more stream
partitions), perform the specified processing operations on
the data records, and transmit the results of the processing to
the specified output destination(s). In addition, in at least
some embodiments, a checkpoint scheme may be imple-
mented, in accordance with which a given worker node may
be configured to store progress records or checkpoints indica-
tive of the portion of a partition that has been processed at that
worker node, with the assumption that the partition records
are being processed sequentially. The worker node may, for
example, write a progress record to persistent storage peri-
odically in some implementations (e.g., once every N seconds
or once every R data records have been processed), and/or in
response to checkpoint requests from an SPS control server.

10

15

20

25

30

35

40

45

50

55

60

65

10

The progress records may be used for rapid recovery from
worker node failures in some embodiments. For example, an
SPS control server may monitor the health status of the vari-
ous worker nodes over time, e.g., using a heartbeat mecha-
nism and/or by monitoring resource utilization levels (such as
CPU utilization, I/O device utilization, or network utilization
levels). In response to a determination by the SPS control
server that a particular worker node is in an undesired or
unhealthy state (e.g., if it is unresponsive or overloaded), a
replacement worker node may be instantiated to take over the
responsibilities of the particular worker node. The replace-
ment worker node may access the most recent progress record
stored by the replaced worker node to identify the set of data
records that the replacement worker node should process. In
embodiments in which the processing operations are idem-
potent, even if some operations are repeated (e.g., because the
most recent progress record was written some time prior to
the replacement worker’s instantiation), the overall results of
the processing would not be affected by the failure and
replacement. In some implementations, in addition to storing
progress records indicating the subset of a given stream or
partition that has been processed by it, a worker node may
also be configured to store accumulated application state
information. For example, if a stream processing workflow is
responsible for determining client billing amounts for a par-
ticular service based on analyzing streaming data records that
indicate service usage metrics, a worker node may periodi-
cally store the cumulative billing amounts determined for
various clients.

In atleast some embodiments, the SPS control servers may
also be configured to respond to various other triggers such as
changing workload levels or detected workload imbalances
(e.g., if the ingestion rates for one partition become dispro-
portionately higher than those of others) by initiating other
actions, such as requesting dynamic repartitioning of the
input streams for various stages, changing the number of
worker nodes assigned to a given partition at a given stage.,
assigning higher-performance worker nodes to some stages,
or transferring worker nodes from one physical resource to
another physical resource with a different performance capa-
bility. In some embodiments, e.g., in response to a determi-
nation by an SPS control server that a best-effort recovery
policy is to be implemented for a given stage rather than a
checkpoint-based recovery policy, progress records of the
type described above may not be stored by worker nodes of at
least some SPS stages. In some implementations of such a
best-effort recovery policy, a replacement worker node may
simply process new data records as they are received, without
requiring access to progress records. In some embodiments, if
a client wishes to implement a best-effort recovery policy at
an SPS stage, the stream processing operations performed at
the stage need not necessarily be idempotent. In some
embodiments in which non-idempotent processing opera-
tions are to be performed on stream records at an SPS stage,
checkpoint-based recovery may not be supported, and a dif-
ferent recovery scheme such as best-effort recovery may be
used. In at least one embodiment, only idempotent stream
processing operations may be allowed at SPS stages.

The data records of some streams may contain sensitive or
confidential information, or the processing operations per-
formed at the SPS stages may comprise the use of proprietary
algorithms whose discovery by competitors may be problem-
atic. Clients may thus be concerned about the security of
various categories of stream management and processing
operations, especially if the operations are performed using
resources located at provider network data centers that are not
fully controlled by the clients themselves. Networks set up by

US 9,276,959 B2

11

an entity such as a company or a public sector organization to
provide one or more network-accessible services (such as
various types of cloud-based database, computing or storage
services) accessible via the Internet and/or other networks to
a distributed set of clients may be termed provider networks
herein. In some embodiments, clients may be able to choose
from among a plurality of security-related options for their
data streams. As described above, a combined SPS and SMS
configuration may comprise nodes belonging to a number of
different functional categories, such as control nodes for the
SMS and/or the SPS, SMS ingestion nodes, SMS storage
nodes, SMS retrieval nodes, and SPS processing or worker
nodes. The security-related choices made available to clients
may include options for placement or locations of various
types of nodes in some embodiments. For example, in one
embodiment, a client may be able to request that SPS worker
nodes for one or more processing stages of a stream workflow
be implemented at computing devices located on client-
owned facilities, even if the stream records are initially col-
lected and/or stored using resources located at a provider
network. In response to such placement requests, nodes of
different functional categories for a given stream may be
instantiated at respective resource sets with differing security
characteristics or profiles.

The resource sets may differ from one another in various
security-related characteristics in different embodiments,
including for example physical location, physical security
protocols being used (e.g., who has physical access to the
resources), network isolation levels (e.g., the extent to which
network addresses of the resources are visible to various
entities), multi-tenancy versus single-tenancy, and so on. In
some embodiments, clients may be able to establish isolated
virtual networks (IVNs) within a provider network, with a
given client being given substantial control over networking
configurations of various devices included within that client’s
IVN. In particular, clients may be able to restrict access to the
network addresses (e.g., Internet Protocol or IP addresses)
assigned to various servers or compute instances within their
IVNs. In such embodiments, clients may request that certain
subsets of their SMS or SPS nodes be instantiated within
specified [IVNs. In embodiments in which provider network
resources such as virtualization instance hosts (which may
typically be configured as multi-tenant hosts) are being used
for various categories of SMS or SPS nodes, a client may
request that some set of nodes be instantiated on instance
hosts that are restricted to implementing instances belonging
to that client alone (i.e., some SMS or SPS nodes may be
implemented at instance hosts configured as single-tenant
hosts).

In some embodiments, as another security-related option,
clients may request that the data records of a particular stream
be encrypted before they are transmitted over a network
link—e.g., before being ingested at the SMS, between the
ingestion and storage subsystems, between the storage and
retrieval subsystems, between the retrieval subsystems and
the SPS worker nodes, and/or between the worker nodes and
the SPS output destinations. Clients may specity the encryp-
tion algorithms to be used in some embodiments. In one
embodiment, secure networking protocols such as TLS
(Transport Layer Security) or SSL (secure sockets layer)
protocols may be used for data record transmissions and/or
for transmitting SPS processing results.

Data Stream Concepts and Overview

FIG. 1 provides a simplified overview of data stream con-
cepts, according to at least some embodiments. As shown, a
stream 100 may comprise a plurality of data records (DRs)
110, such as DRs 110A,110B, 110C, 110D and 110E. One or

25

30

40

45

50

12

more data producers 120 (which may also be referred to as
data sources), such as data producers 120A and 120B, may
perform write operations 151 to generate the contents of data
records of stream 100. A number of different types of data
producers may generate streams of data in different embodi-
ments, such as, for example, mobile phone or tablet applica-
tions, sensor arrays, social media platforms, logging applica-
tions or system logging components, monitoring agents of
various kinds, and so on. One or more date consumers 130
(such as data consumers 130A and 130B) may perform read
operations 152 to access the contents of the data records
generated by the data producers 120. Data consumers 130
may comprise, for example, worker nodes of a stream pro-
cessing stage in some embodiments.

In at least some embodiments, a given data record 110 as
stored in an SMS may comprise a data portion 101 (e.g., data
portions 101A, 101B, 101C, 101D and 101E of DRs 110A,
110B, 110C, 110D and 110E respectively) and a sequence
number SN 102 (e.g., SNs 1024, 102B, 102C, 102D and
102E of DRs 110A, 110B, 110C, 110D and 110E respec-
tively). The sequence number 102 may be indicative of the
order in which the DRs are received at a stream management
system (or at a particular node of a stream management sys-
tem) in the depicted embodiment. The data portions 101 may
comprise immutable un-interpreted byte sequences in some
implementations: that is, once a write operation 152 is com-
pleted, the contents of the DR generated as aresult of the write
may not be changed by the SMS, and in general the SMS may
not be aware of the semantics of the data. In some implemen-
tations, different data records of a given stream 100 may
comprise different amounts of data, while in other implemen-
tations, all the data records of a given stream may be of the
same size. In at least some implementations, nodes of the
SMS (e.g., ingestion subsystem nodes and/or storage sub-
system nodes) may be responsible for generating the SNs
102. As described below in further detail, the sequence num-
bers of the data records need not always be consecutive. In
one implementation, clients or data producers 120 may pro-
vide, as part of a write request, an indication of a minimum
sequence number to be used for the corresponding data
record. In some embodiments, data producers 120 may sub-
mit write requests that contain pointers to (or addresses of) the
data portions of the data records, e.g., by providing a storage
device address (such as a device name and an offset within the
device) or a network address (such as a URL) from which the
data portion may be obtained.

The stream management service may be responsible for
receiving the data from the data producers 120, storing the
data, and enabling data consumers 130 to access the data in
one or more access patterns in various embodiments. In at
least some embodiments, the stream 100 may be partitioned
or “sharded” to distribute the workload of receiving, storing,
and retrieving the data records. In such embodiments, a par-
tition or shard may be selected for an incoming data record
110 based on one or more attributes of'the data record, and the
specific nodes that are to ingest, store or retrieve the data
record may be identified based on the partition. In some
implementations, the data producers 120 may provide
explicit partitioning keys with each write operation which
may serve as the partitioning attributes, and such keys may be
mapped to partition identifiers. In other implementations, the
SMS may infer the partition ID based on such factors as the
identity of the data producer 120, the IP addresses of the data
producers, or even based on contents of the data submitted. In
some implementations in which data streams are partitioned,
sequence numbers may be assigned on a per-partition basis—
for example, although the sequence numbers may indicate the

US 9,276,959 B2

13

order in which data records of a particular partition are
received, the sequence numbers of datarecords DR1 and DR2
in two different partitions may not necessarily indicate the
relative order in which DR1 and DR2 were received. In other
implementations, the sequence numbers may be assigned on
a stream-wide rather than a per-partition basis, so that if
sequence number SN1 assigned to a data record DR1 is lower
than sequence number SN2 assigned to data record DR2, this
would imply that DR1 was received earlier than DR2 by the
SMS, regardless of the partitions to which DR1 and DR2
belong.

The retrieval or read interfaces supported by an SMS may
allow data consumers 130 to access data records sequentially
and/or in random order in various embodiments. In one
embodiment, an iterator-based set of read application pro-
gramming interfaces (APIs) may be supported. A data con-
sumer 130 may submit a request to obtain an iterator for a data
stream, with the initial position of the iterator indicated by a
specified sequence number and/or a partition identifier. After
the initiator is instantiated, the data consumer may submit
requests to read data records in sequential order starting from
that initial position within the stream or the partition. If a data
consumer wishes to read data records in some random order,
a new iterator may have to be instantiated for each read in
such embodiments. In at least some implementations, the data
records of a given partition or stream may be written to
disk-based storage in sequence number order, typically using
sequential write operations that avoid disk seeks. Sequential
read operations may also avoid the overhead of disk seeks.
Accordingly, in some embodiments, data consumers may be
encouraged to perform more sequential reads than random
reads using pricing incentives: e.g., random-access read
operations such as iterator instantiations may have higher
associated billing rates than sequential-access read opera-
tions.

Example System Environment

FIG. 2 provides an overview of the flow of data among
various subcomponents of a stream management system
(SMS) and a stream processing system (SPS) comprising a
collection of stream processing stages, according to at least
some embodiments. As shown, the SMS 280 may comprise
an ingestion subsystem 204, a storage subsystem 206, a
retrieval subsystem 208, and an SMS control subsystem 210.
Each of the SMS subsystems may include one or more nodes
or components, implemented for example using respective
executable threads or processes instantiated at various
resources of a provider network (or a client-owned or third-
party facility) as described below. Nodes of the ingestion
subsystem 204 may be configured (e.g., by nodes of the SMS
control subsystem 210) to obtain data records of a particular
data stream from data producers 120 (such as 120A, 120B,
and 120C) based on a partitioning policy in use for the stream,
and each ingestion node may pass received data records on to
corresponding nodes of the storage subsystem 206. The stor-
age subsystem nodes may save the data records on any of
various types of storage devices in accordance with a persis-
tence policy selected for the stream. Nodes of the retrieval
subsystem 208 may respond to read requests from data con-
sumers, such as worker nodes of SPS 290. Stream processing
stages 215, such as stages 215A, 215B, 1215C and 215D of
the SPS 290 may be established with the help of SPS control
subsystem 220. Each stage 215 may include one or more
worker nodes configured by the SPS control subsystem 220 to
perform a set of processing operations on received data
records. As shown, some stages 215 (such as 215A and 215B)
may obtain data records directly from the SMS 280, while
others (such as 215C and 215D) may receive their inputs from

10

15

20

25

30

35

40

45

50

55

60

65

14

other stages. Multiple SPS stages 215 may operate in parallel
in some embodiments, e.g., different processing operations
may be performed concurrently on data records retrieved
from the same stream at stages 215A and 215B. Itis noted that
respective subsystems and processing stages similar to those
illustrated in FIG. 2 for a particular stream may be instanti-
ated for other streams as well.

In at least some embodiments, at least some of the nodes of
the subsystems and processing stages shown in FIG. 2 may be
implemented using provider network resources. As noted
earlier, networks set up by an entity such as a company or a
public sector organization to provide one or more network-
accessible services (such as various types of cloud-based
database, computing or storage services) accessible via the
Internet and/or other networks to a distributed set of clients
may be termed provider networks herein. Some of the ser-
vices may be used to build higher-level services: for example,
computing, storage or database services may be used as build-
ing blocks for a stream management service or a stream
processing service. At least some of the core services of a
provider network may be packaged for client use in service
units called “instances™ for example, a virtual machine
instantiated by a virtualized computing service may represent
a “compute instance”, and a storage device such as a block-
level volume instantiated by a storage service may be referred
to as a “storage instance”, or a database management server
may be referred to as a “database instance”. Computing
devices such as servers at which such units of various net-
work-accessible services of a provider network are imple-
mented may be referred to as “instance hosts” or more simply
as “hosts” herein. Nodes of the ingestion subsystem 204, the
storage subsystem 206, the retrieval subsystem 208, the SMS
control system 210, the processing stages 215, and/or the SPS
control subsystem 220 may comprises threads or processes
executing at various compute instances on a plurality of
instance hosts in some embodiments. A given instance host
may comprise several compute instances, and the collection
of compute instances at a particular instance host may be used
to implement nodes for various different streams of one or
more clients. Storage instances may be used for storing the
data records of various streams in some embodiments, or as
destinations of the results of stream processing stages. Over
time, control subsystem nodes may modify the populations of
other subsystems dynamically in response to various trigger-
ing conditions, e.g., by adding or removing nodes, changing
the mappings of nodes to processes or compute instances or
instance hosts, or re-partitioning a given stream while still
continuing to receive, store and process data records as
described below with reference to FIG. 15 and FIG. 16.

In the context of embodiments in which provider network
resources are used for stream-related operations, the term
“client”, when used as the source or destination of a given
communication, may refer to any of the computing devices,
processes, hardware modules or software modules that are
owned by, managed by, or allocated to, an entity (such as an
organization, a group with multiple users or a single user) that
is capable of accessing and utilizing at least one network-
accessible service of a provider network. Clients of one ser-
vice may themselves be implemented using resources of
another service—e.g., a stream data consumer (a client of a
stream management service) may comprise a compute
instance (a resource provided by a virtualized computing
service).

A given provider network may include numerous data cen-
ters (which may be distributed across different geographical
regions) hosting various resource pools, such as collections of
physical and/or virtualized computer servers, storage servers

US 9,276,959 B2

15

with one or more storage devices each, networking equip-
ment and the like, needed to implement, configure and dis-
tribute the infrastructure and services offered by the provider.
A number of different hardware and/or software components,
some of which may be instantiated or executed at different
data centers or in different geographical regions, may collec-
tively be used to implement each of the services in various
embodiments. Clients may interact with resources and ser-
vices at the provider network from devices located at client-
owned or client-managed premises or data centers external to
the provider network, and/or from devices within the provider
network. It is noted that although provider networks serve as
one example context in which many of the stream manage-
ment and processing techniques described herein may be
implemented, those techniques may also be applied to other
types of distributed systems than provider networks, e.g., to
large-scale distributed environments operated by a single
business entity for its own applications.

Programmatic Interface Examples

As indicated above, in at least some embodiments an SPS
may utilize SMS programmatic interfaces to build higher-
level functionality that can more easily be used by SPS clients
to implement the desired business logic for various stream-
based applications. When considering the differences
between SPS and SMS functionality, an analogy may be
helpful: SPS functions may in general be compared to pro-
gramming language constructs in higher-level languages
such as C++, while SMS functions may in general be com-
pared to the assembly language instructions to which the
programming language constructs are translated by a com-
piler. It may be possible to implement the same operations
using the assembly language instructions directly, but pro-
gramming in the higher-level language may typically be
easier for many categories of customers or users. Similarly, it
may be possible to implement various applications using the
primitives provided by an SMS, but it may be easier to do so
using SPS features. SPS processing operations (such as idem-
potent processing operations performed on data records) may
be implemented on the data contents of the stream records,
while the SMS operations are performed to acquire, store and
retrieve the records themselves, usually without considering
the contents of the records. FIG. 3 illustrates examples of
respective sets of programmatic interfaces that may be imple-
mented at an SMS an SPS, according to at least some embodi-
ments. A number of different application programming inter-
faces (APIs) are indicated for both the SMS and the SPS by
way of example. The APIs illustrated are not intended to be
exhaustive lists of those supported in any given implementa-
tion, and some of the illustrated APIs may not be supported in
a given implementation.

As indicated by arrow 350, SPS clients 375 may invoke
SPS programmatic interfaces 305 to configure processing
stages. Various types of SPS programmatic interfaces 305
may be implemented in different embodiments. For example,
a createStreamProcessingStage APl may enable clients to
request the configuration of a new processing stage 215 for a
specified input stream, such that worker nodes of the stage are
each configured to perform a set of idempotent operations
specified in the interface invocation, and to distribute the
results to destinations indicated by an output distribution
descriptor or policy. In some versions of the createStream-
ProcessingStage API or its equivalent, a client may request
the creation of the input stream as well, while in other ver-
sions, an input stream may have to be created before the
processing stage is created. A recovery policy may be speci-
fied for the worker nodes, indicating for example whether a
checkpoint-based recovery technique is to be used or a best-

10

15

20

25

30

35

40

45

50

55

60

65

16

effort recovery technique is preferred. In some embodiments
an initialize WorkerNode API may be supported to request the
explicit instantiation of worker nodes at a specified stage. In
embodiments in which checkpoint-based recovery is imple-
mented, a saveCheckpoint API may be supported to allow
clients to request that progress records be generated by
worker nodes.

Various types of SPS output management APIs may be
supported in different embodiments, such as a setOutputDis-
tribution API by which a client may indicate one or more
streams to be created using the results of the processing
operations performed at a specified stage, and the particular
partitioning policies to be used for the newly created streams.
Some processing stages may be configured primarily for rep-
artitioning—e.g., one partitioning function PF1 that maps
data records to N1 partitions based on record attribute set A1
may be in use for an input stream S1, and a processing stage
may be used to implement a different partitioning function
PF2 to map those same data records to N2 partitions (using
either a different attribute set A2, or the same attribute set A1).
Some SPS APIs such as linkStages may be used to configure
arbitrary graphs (e.g., directed acyclic graphs) comprising a
plurality of stages. In some embodiments, connectors to
third-party or open-source stream processing frameworks or
services may be supported. In one such embodiment, an SPS
stage may be used to prepare data records (e.g., by appropri-
ately formatting results of the processing operations per-
formed at the stage) for consumption by existing third-party
or open-source systems. An API such as createThirdParty-
Connector may be used to set up such connectors in the
depicted embodiment, and the appropriate transformations of
the results of the SPS stage into a format compatible with the
third party system may be performed by one or more connec-
tor modules instantiated as a result of a createThirdPartyCon-
nector invocation.

The SPS may invoke SMS APIs 307 to perform at least
some of its functions, as indicated by arrow 352. The SMS
APIs 307 may include, for example, createStream and
deleteStream (to create and delete a stream, respectively) and
getStreamInfo (to obtain metadata for a stream, such as the
network addresses of various types of nodes responsible for a
given partition) in the depicted embodiment. A putRecord
interface may be used to write data records, while the getlt-
erator and getNextRecords interfaces may be used for non-
sequential and sequential reads respectively. A repartition-
Stream interface may be used to request dynamic
repartitioning of a specified stream in some embodiments.
Clients 370 that wish to do so may invoke the SMS APIs 307
directly, as indicated by arrow 354. As indicated earlier, vari-
ous other SMS and/or SPS APIs may also be implemented in
other embodiments, and some ofthe APIs listed in FIG. 3 may
not be implemented in some embodiments.

In various embodiments, programmatic interfaces other
than APIs may also or instead be implemented for either the
SPS or the SMS. Such interfaces may include graphical user
interfaces, web pages or web sites, command-line interfaces,
and the like. In some cases web-based interfaces or GUIs may
use the APIs as building blocks—e.g., a web-based interac-
tion may result in the invocation of one or more APIs at
control components of the SMS or SPS. FIG. 4 illustrates an
example web-based interface that may be implemented to
enable SPS clients to generate graphs of stream processing
stages, according to at least some embodiments. As shown,
the interface comprises a web page 400 with a message area
402, a graph menu area 404 and a graph design area 403.

Users may be provided general instructions regarding the
construction of stream processing graphs in message area

US 9,276,959 B2

17

402, as well as links to enable used to learn more about stream
concepts and primitives. A number of graphical icons may be
provided as part of a stream processing graph toolset in menu
area 404. For example, clients may be allowed to indicate, as
inputs or outputs of various SPS processing stages, persistent
streams 451, ephemeral streams 452, or connectors 453 to
third-party processing environments. With respect to the SPS/
SMS for which the web-based interface is implemented, a
persistent stream 451 may be defined as a stream whose data
records are stored on persistent storage devices such as disks,
non-volatile RAMs, or SSDs, and an ephemeral stream 452
may be defined as one whose data records need not be stored
at persistent storage devices. An ephemeral stream may be
created, for example, from the output of an SPS stage that is
expected to be consumed as input by a different SPS stage at
which a best-effort recovery policy is to be implemented.

Two types of processing stages are supported in the
example SPS graph construction web page 400: stages 455 in
which checkpoint-based worker node recovery is used (e.g.,
each worker node saves progress records at intervals, and in
the event of failure of a particular worker node, a replacement
node refers to the failed node’s progress records to determine
which data records to start processing), and stages 456 in
which best-effort recovery is used (e.g., replacement worker
nodes do not refer to progress records, but simply start pro-
cessing new data records as they are received). Details regard-
ing the processing operations to be performed at each stage
may be entered by clicking on the corresponding icon in the
graph construction area 403, as indicated by the instructions
in message area 402. In addition to icons for streams, con-
nectors, and processing stages, the menu area 404 also
includes icon type 459 indicating third-party or external
stream processing systems, and icon type 460 indicating
nodes of a storage service that may be implemented at a
provider network whose resources are being used for the
processing stages.

In the example scenario shown in FIG. 4, a client has
constructed a graph 405 comprising three processing stages
412, 415 and 416 within graph design area 403. Processing
stage 412, which is configured to use checkpoint-based
recovery, uses a persistent stream 411 as input. Output or
results of the processing at stage 412 is sent to two destina-
tions: in the form of a different persistent stream 413 that
forms the input of stage 415, and in the form of an ephemeral
stream 414 that forms the input of stage 416. Stages 415 and
416 both use best-effort recovery policies for their worker
nodes. The output of stage 415 is sent in the form of an
ephemeral stream to storage service node 419. The output of
stage 415 is sent via a connector 417 to a third-party process-
ing system 418. A “save graph” button 420 may be used to
save a representation of the processing stage graph, e.g., in
any appropriate format such as JSON (JavaScript Object
Notation), XML (Extensible Markup Language) or YAML..
Arbitrarily complex processing workflows may be con-
structed using tools similar to those shown in FIG. 4 in vari-
ous embodiments. The workflows created using such tools
may subsequently be activated, and such activations may
result in invocations of SMS APIs—for example, to obtain
data records for a processing stage such as stage 412 of FIG.
4, getlterator and/or getNextRecords interfaces may be
invoked on stream 411.

FIG. 5 illustrates examples of programmatic record sub-
mission interfaces and record retrieval interfaces that may be
implemented at an SMS, according to at least some embodi-
ments. Data records, such as the illustrated DRs 110K and
110Q, may be submitted via various types of programmatic
ingestion interfaces 510 to the SMS in the depicted embodi-

10

15

20

25

30

35

40

45

50

55

60

65

18

ment. A DR 110 may comprise four types of elements in some
embodiments: a stream identifier such as S01A (for stream
“S17) or 501B (for stream “S2”), an indication of the data or
body of the record, an optional partition key 504 (such as
504 A or 504B), and an optional sequencing preference indi-
cator 506 (such as sequencing preference indicators 506 A
and 506B). The data itself may be provided in-line in some
data records (e.g., inline data 502 of DR 110K), while for
other data records a pointer or address 503 may be provided,
indicating to the SMS a network-accessible location (or an
address at a local device that does not require network trans-
fers). In some embodiments, a given stream may support both
inline and by-reference (address-based) data record submis-
sions. In other embodiments, a given stream may require data
producers to supply all the data inline or all the data by
reference. In some implementations, a data record submis-
sion may include a partition identifier to be used for the
record.

The incoming data records 110 may be directed to respec-
tive ingestion and/or storage nodes based on a partitioning
policy in the depicted embodiment. Similarly, record retrieval
may also be partition-based—e.g., one or more retrieval
nodes may be designated for responding to read requests
directed to records of a given partition. For some streams, data
producers may be required to provide an explicit partition key
with each data record write request. For other streams, the
SMS may be able to distribute the data records according to a
partitioning scheme that relies on metadata or attributes other
than explicitly-supplied partition keys—for example, identi-
fication information pertaining to the submitting data pro-
ducer may be used as a partition key, or a portion or all of the
submitting data producer’s IP address may be used, or a
portion of the data being submitted may be used. In some
implementations, for example, a hash function may be
applied to a partition key to obtain an integer value of a certain
size, such as a 128-bit integer. The total range of positive
integers of that size (e.g., from 0 to 2"128-1) may be divided
into N contiguous sub-ranges, with each sub-range represent-
ing arespective partition. Thus, in such an example, any given
partition key determined or supplied for a data record would
be hashed to a corresponding 128-bit integer, and the con-
tiguous sub-range of 128-bit integers to which that integer
belongs may indicate the partition to which the data record
belongs. Further details about partitioning policies and their
use are provided below with respect to FIG. 15.

The set of nodes responsible for ingesting or accepting the
data records of the particular partition, storing the data
records, and responding to read requests for the particular
partition, are collectively referred to as ISR (ingestion, stor-
age and retrieval) nodes for the partition in FIG. 5. The nota-
tion Sj-Pkis used to indicate the kth partition of stream S1. In
the illustrated embodiment, ISR nodes 520A are configured
for ingesting, storing and retrieving records of partition
S1-P1, ISR nodes 520B are set up for records of partition
S1-P2, ISR nodes 520C are set up for records of partition
S1-P3, ISR nodes 520K are set up for records of partition
S2-P1, and ISR nodes 520L are set up for records of partition
S2-P2. In some embodiments, a give node of an ingestion
subsystem, a storage subsystem, or a retrieval subsystem may
be configured to handle data records of more than one parti-
tion (or more than one partition of more than one stream). In
some embodiments, the records of a single partition of'a given
stream may be ingested, stored or retrieved by more than one
node. The number of ingestion nodes designated for a given
partition Sj-Pk may in at least some cases differ from the
number of ingestion nodes designated for a different partition
Sj-Pl, and may also differ from the number of storage nodes

US 9,276,959 B2

19

designated for Sj-Pk and/or the number of retrieval nodes
designated for Sj-Pk. With respect to ingestion and/or
retrieval, SMS control nodes may implement APIs (such as
getStreamInfo) in some embodiments to allow clients to
determine which nodes are responsible for which partitions.
The mappings between data records and partitions, and
between partitions and ISR nodes (or control nodes) config-
ured, may be modified over time, as described below in the
discussion regarding dynamic repartitioning.

In some embodiments, several different programmatic
interfaces 580 may be implemented for retrieving or reading
stream data records from a given partition. As shown in FIG.
5, some retrieval interfaces 581 may be implemented for
non-sequential accesses, such as getlterator (to instantiate an
iterator or read cursor at or after a data record with a specified
sequence number) or getRecord (to read a data record with a
specified sequence number). Other retrieval interfaces 582
may be implemented for sequential retrieval, such as getNex-
tRecords (an interface requesting that N records be read from
the current position of an iterator, in order of increasing
sequence number). In rotating disk-based storage systems, as
mentioned earlier, sequential [/O may in many cases be much
more efficient than random 1/0, because the number of disk
head seeks required on average per [/O may typically be much
lower for sequential I/O than for random I/O. In many
embodiments, the data records of a given partition may be
written in sequence number order, and as a result sequential
read requests based on sequence number ordering (e.g., using
getNextRecords or a similar interface) may be much more
efficient than random read requests. In at least some embodi-
ments, therefore, different billing rates may be set for sequen-
tial versus non-sequential retrieval interfaces—for example,
clients may be charged more for non-sequential reads.
Ingestion Subsystem

FIG. 6 illustrates example elements of an ingestion sub-
system 204 of an SMS, according to at least some embodi-
ments. In the depicted embodiment, ingestion operations are
logically divided into front-end and back-end functions, with
the front-end functions involving interactions with data pro-
ducers 120 (e.g., 120A, 120B or 120C), and back-end func-
tions involving interactions with an SMS storage subsystem.
Such a front-end/back-end split may have several advantages,
such as enhancing the security of the storage subsystem and
avoiding having to provide partitioning policy details to data
producers. SMS client libraries 602 may be provided for
installation at various data producers 120, and the data pro-
ducers may invoke programmatic interfaces included in the
libraries 602 to submit data for ingestion. For example, in one
embodiment the data producers 120 may comprise logging or
monitoring agents instantiated at hundreds or thousands of
physical and/or virtual servers of a provider network. Such
agents may collect various log messages and/or metrics at
their respective servers and periodically submit the collected
messages or metrics to a front-end load distributor 604 end-
point instantiated by one or more ingestion control nodes 660
of the SMS. In some embodiments, one or more virtual IP
addresses (VIPs) may be established for the load distributors,
to which the data producers may submit the stream data. In
one implementation, a round-robin DNS (Domain Name Sys-
tem) technique may be used for a VIP to select a particular
load distributor from among several equivalently configured
load distributors to which data is to be sent by data producers
120.

The received data records may be directed to any of several
front-end nodes 606 (e.g., 606A, 6068 or 606C) in the
depicted embodiment. In at least some embodiments, the load
distributor 604 may not be aware of the partitioning policy

25

30

40

45

20

650 in use for the data records, and the front-end node 606
may therefore be chosen for a given data record using round-
robin load balancing (or some other general-purpose load
balancing algorithm) rather than partition-based load balanc-
ing. The front-end nodes 606 may be aware of the partitioning
policies 650 for various streams, and may interact with the
ingestion control nodes 660 to obtain the identities of the
specific back-end ingestion node 608 (e.g., 608A, 608B or
608C) that is configured for a given partition’s data records.
Thus, in the depicted embodiment, the front-end nodes 604
may each transmit data records to a plurality of back-end
nodes 606, based on the respective partitions to which the data
records belong. As noted earlier, the partition to which a data
record belongs may be determined based on any combination
of'various factors, such as a partition key supplied by the data
producer, one or more other attributes such as the identity or
address of the data producer, or the contents of the data.

The back-end nodes 606 may each receive data records
belonging to one or more partitions of one or more streams,
and transmit the data records to one or more nodes of the
storage subsystem. The back-end nodes may be referred to as
“PUT servers” in some embodiments in which the data is
submitted via HTTP (HyperText Transfer Protocol) “PUT”
web service APIs. A given back-end node may determine the
set of storage subsystem nodes to which its data records are to
be transmitted by submitting a query to a control node 660
(which in turn may submit a corresponding query to a control
node of the storage subsystem in embodiments in which
control functions for the different subsystems are handled by
separate sets of nodes).

In atleast some embodiments, a number of different inges-
tion acknowledgement policies 652 may be supported, such
as an at-least-once ingestion policy or a best-effort ingestion
policy. In an at-least-once policy, the data producers 120 may
require positive acknowledgements for each data record sub-
mitted, and may repeatedly submit the same data record (if an
acknowledgement of the first submission is not received)
until an acknowledgement is eventually received. In the best-
effort ingestion policy, positive acknowledgements may not
be required for at least some data records submitted (although
the ingestion subsystem may still provide occasional
acknowledgements, or may respond to explicit requests for
acknowledgements from the data producers). In some
embodiments in which the ingestion subsystem 204 is
required to provide acknowledgements to the data producers,
the back-end ingestion node 608 responsible for a given data
record may wait until the required number of replicas of the
data records have been successfully created at the storage
subsystem (e.g., in accordance with a persistence policy
established for the stream), before generating an acknowl-
edgement. In various embodiments, a sequence number may
be generated by the ingestion subsystem for each data record
received, e.g., indicative of the order in which that record was
ingested relative to other records of the same partition or
stream, and such a sequence number may be returned to the
data producer as an acknowledgement, or as part of an
acknowledgement. Further details regarding sequence num-
bers are provided below with reference to FIG. 13a and FIG.
135b. The acknowledgement and/or sequence number may be
transmitted back to the data producer via a front-end node 606
in some implementations. In at least one implementation, the
at-least-once policy may be implemented between the front-
end and the back-end nodes of the ingestion subsystem
itself—e.g., a given front-end node 606 may repeatedly sub-
mit a data record to the appropriate back-end node 608 until
the back-end node provides an acknowledgement.

US 9,276,959 B2

21

Ingestion control nodes 660 may be responsible for, among
other functions, instantiating the front-end and back-end
nodes, monitoring the health and workload levels of the
nodes, orchestrating failovers as needed, providing responses
to queries regarding which nodes are responsible for a given
partition or to policy-related queries, for ingestion-related
configuration operations resulting from dynamic repartition-
ing of streams. The number of ingestion control nodes desig-
nated for a given set of one or more streams may itself be
changed over time in some embodiments, e.g., one or more
master control nodes may be responsible for reconfiguring
the control node pool as needed. In some embodiments in
which redundancy groups are setup for ingestion front-end or
back-end nodes, as described below in further detail with
respect to FIG. 9 and FIG. 10, the control nodes 660 may be
responsible for keeping track of which nodes are primaries
and which are non-primary, for detecting the triggering con-
ditions for failover, and for selecting replacements when
failovers are required. It is noted that the multi-layered inges-
tion subsystem architecture illustrated in FIG. 6 may not be
implemented in some embodiments, e.g., only a single set of
ingestion nodes may be configured in some scenarios.
Storage Subsystem

FIG. 7 illustrates example elements of a storage subsystem
of an SMS, according to at least some embodiments. As
shown, ingestion nodes 608 (e.g., back-end ingestion nodes
in embodiments in which front-end and back-end ingestion
responsibilities are handled by different sets of nodes) may
transmit data records of one or more partitions of a stream to
respective storage nodes 702 configured for those partitions.
For example, data record 110A of partition S1-P1 is sent to
storage node 702A, data record 110B of partition S2-P3 is
sent to storage nodes 702B and 702C, data record 110C of
partition S3-P7 is sent to storage node 702D, and data record
110D of partition S4-P5 is sent initially to storage node 702E.
Storage control nodes 780 may be responsible for enforcing
the persistence policies 750 that are applied to data records of
the different streams, configuring and reconfiguring storage
nodes as needed, monitoring storage node states, managing
failovers, responding to storage configuration queries or stor-
age policy queries, and various other administrative tasks in
the depicted embodiment.

Persistence policies 750 may differ from one another in
various ways in different embodiments. For example, a per-
sistence policy P1 applied to stream Sj may differ from a
policy P2 applied to stream Sk in (a) the number of replicas of
each data record to be stored, (b) the type of storage device or
system on which the replicas are to be stored (e.g., whether
replicas are to be stored in volatile memory, non-volatile
caches, rotating disk-based storage, solid-state drives (SSDs),
storage appliances of various kinds, RAID (redundant arrays
of inexpensive disks) of various kinds, in database manage-
ment systems, at nodes of a storage service implemented by a
provider network, and so forth), (¢) the geographical distri-
bution of the replicas (e.g., whether the stream data is to be
made resilient to large-scale failures or certain types of disas-
ters by placing replicas in different data centers), (d) the write
acknowledgement protocol (e.g., if N replicas are to be
stored, how many of the N copies have to be written success-
fully before an acknowledgement should be provided to the
ingestion node), and/or (e) whether, in cases in which mul-
tiple replicas of data records are to be stored, the replicas
should be created in parallel or sequentially. In some cases in
which multiple replicas are to be stored, as in the case of data
record 110D, a given storage node may transmit the data
record to another storage node (e.g., storage node 702E sends
data record 110D for further replication to storage node 702F,

10

15

20

25

30

35

40

45

50

55

60

65

22

and storage node 702F sends it on to storage node 702G). In
other cases in which a multiple-replica persistence policy is
used, as in the case of data record 110B for which two in-
memory replicas are to be stored, the ingestion node may
initiate the multiple replications in parallel. In at least some
embodiments, the client’s chosen persistence policy may not
specify the type of storage location to be used for stream data
records; instead, the SMS may select the appropriate types of
storage technology and/or locations based on various criteria,
such as cost, performance, proximity to data sources, dura-
bility requirements, and so on. In one embodiment, either the
client or the SMS may decide to use different storage tech-
nologies or storage location types for different partitions of a
given stream, or for different streams.

In the example shown in FIG. 7, the persistence policy
applied to stream S1 (or at least partition S1-P1 of stream S1)
is a single-replica in-memory policy, while for stream S2 a
two-parallel-replica in-memory policy is applied. Accord-
ingly, an in-memory replica 704A of data record 110A is
created at storage node 702 A, while two in-memory replicas
705A and 705B corresponding to data record 110B are cre-
ated in parallel at storage nodes 702B and 702C. For stream
S3’s data record 110C, a single on-disk replica 706 A is cre-
ated. For stream S4, a sequential three-replica-on-disk policy
is applicable, and as a result respective on-disk replicas 707 A,
707B and 707C are created sequentially at storage nodes
702E, 702F and 702G. Various other types of persistence
policies may be applied to data streams in different embodi-
ments. Nodes of the retrieval subsystem may obtain the data
records from the appropriate storage nodes in response to
invocations of various types of retrieval APIs by data con-
sumers.

Retrieval Subsystem and Processing Stages

FIG. 8 illustrates example elements of a retrieval sub-
system of an SMS and examples of interactions of the
retrieval subsystem with an SPS, according to at least some
embodiments. As shown, retrieval subsystem 206 may com-
prise a plurality of retrieval nodes 802, such as retrieval node
802A, 802B and 802C, as well as a collection of retrieval
control nodes 880. Each of the retrieval nodes 802 may be
configured to respond to stream data retrieval requests from
various clients or data consumers 130, such as worker nodes
840 of an SPS as described below. A variety of programmatic
retrieval interfaces 802 may be implemented by the retrieval
nodes in different embodiments, such as the non-sequential
and sequential retrieval interfaces described earlier. In some
embodiments, web services APIs such as HTTP GET
requests may be used for data record retrieval, and the
retrieval nodes 802 may accordingly be referred to as GET
servers. A given retrieval node 802 may be configured, e.g.,
by a retrieval control node 880, to obtain data records of one
or more stream partitions in the depicted embodiment from
the appropriate set of storage subsystem nodes 702, such as
storage nodes 702A and 702B.

In the depicted embodiment, a retrieval node 802 may
interact with one or more storage nodes 702, and also respond
to retrieval requests received from one or more SPS worker
nodes 840. For example, data records of partitions S4-P5
(e.g., data record 110K) and S5-P8 (e.g., data record 110L)
are read from storage node 702 A by retrieval node 802 A, and
provided to worker nodes 840A and 840K respectively. Data
records of partition S6-P7, such as 110M, are read by retrieval
node 802B from storage node 702A and provided to worker
node 840K. Data records of partition S4-P7 are read by
retrieval node 802C from storage node 702B and provided to
worker node 840B, and also to other data consumers 130

US 9,276,959 B2

23

(e.g., data consumers that directly invoke SMS retrieval APls
instead of interacting with the SMS via an SPS).

In at least some embodiments, some or all of the retrieval
nodes 802 may implement respective caches 804 (such as
cache 804A at retrieval node 802A, cache 804B at retrieval
node 802B, and cache 804C at retrieval node 802C) in which
data records of various partitions may be retained temporarily
in anticipation of future retrieval requests. Retrieval control
nodes 880 may be responsible for implementing a number of
retrieval policies 882, including for example caching policies
(e.g., how large a cache should be configured for a given
partition, how long data records should be cached), storage
node selection policies (e.g., which particular storage node
should be contacted first to obtain a given data record, in
scenarios in which multiple replicas of data records are
stored), and so on. In addition, retrieval control nodes may be
responsible for instantiating and monitoring retrieval nodes
802, responding to queries regarding which retrieval nodes
are responsible for which partitions, initiating or responding
to re-partitioning operations, and so on.

In the illustrated example, SPS 290 comprises two process-
ing stages, 215A and 215B. SPS control nodes 885 may be
responsible for instantiating worker nodes 804 at the various
processing stages 215, such as worker node 840A to process
records of partition S4-P5, worker node 840B to process
records of partition S4-P7, and worker node 840K to process
records of partitions S5-P8 and S6-P7. The SPS control nodes
885 may implement programmatic interfaces (such as those
illustrated in FIG. 3 and FIG. 4) enabling SPS clients to
design processing workflows. Various checkpoint policies
850 may be implemented for different processing stages or
workflows, indicating when or if worker nodes are to store
progress records indicating how far along they are in process-
ing their respective partitions, the types of storage devices to
be used for the progress records, and so on. Failover/recovery
policies 852 may indicate the triggering conditions or thresh-
old that are to lead to replacing a worker node with a different
node, and whether best-effort recovery is to be used or check-
point-based recovery is to be used for a given processing
stage. In at least some embodiments, the SPS control nodes
885 may interact with various types of SMS control nodes,
e.g., to identify the retrieval nodes from which data records of
a given stream are to be obtained, to establish new ephemeral
or persistent streams that may be required for a particular
processing workflow, and so on. In at least one embodiment,
clients may interact with the SPS control nodes to instantiate
streams—e.g., instead of utilizing SMS control interfaces,
some clients may wish to invoke only higher-level SPS inter-
faces. It is noted that although separate sets of control nodes
are shown in FIGS. 6, 7 and 8 for the SMS ingestion, storage,
and retrieval subsystems, and for the SPS stages, in at least
some embodiments a given control node may be used for
several of the subsystems and/or the SPS.

Node Redundancy Groups

In at least some embodiments, redundant groups of nodes
may be configured for one or more subsystems of an SMS.
That is, instead of for example configuring one retrieval node
for retrieving data records for a stream partition Sj-Pk, two or
more nodes may be established for such retrievals, with one
node being granted a “primary” or active role at a given point
in time, while the other node or nodes are designated as
“non-primary” nodes. The current primary node may be
responsible for responding to work requests, e.g., requests
received either from clients or from nodes of other sub-
systems. The non-primary node or nodes may remain dor-
mant until a failover is triggered, e.g., due to a failure, loss of
connectivity to the primary, or other triggering conditions, at

20

40

45

24

which point a selected non-primary may be notified by a
control node to take over the responsibilities of the previous
primary. The primary role may thus be revoked from the
current incumbent primary node during failover, and granted
to a current non-primary node. In some embodiments, non-
primary nodes may themselves take over as primary when a
determination is made that a failover is to occur, e.g., explicit
notifications may not be required. Such redundant groups of
nodes may be set up for ingestion, storage, retrieval and/or
control functions at an SMS in various embodiments, and a
similar approach may also be taken for worker nodes at an
SPS in at least some embodiments. Such groups comprising
at least one primary node and at least one non-primary node
for a given function may be referred to as “redundancy
groups” or “replication groups” in some embodiments. It is
noted that redundancy groups of storage nodes may be imple-
mented independently of the number of physical copies of the
datarecords that are stored—e.g., the number of replicas to be
stored of a data record may be determined by a persistence
policy, while the number of storage nodes that are configured
for the corresponding partition may be determined based on
redundancy group policies.

FIG. 9 illustrates examples of redundancy groups that may
be set up for nodes of an SMS or an SPS, according to at least
some embodiments. In the depicted embodiment, for a given
stream partition Sj-Pk, respective redundancy groups (RGs)
905, 915, 925 and 935 are set up for ingestion nodes, storage
nodes, retrieval nodes, and control nodes. A common RG 935
for control nodes is implemented in the illustrated embodi-
ment, although separate RGs for ingestion control nodes,
storage control nodes, or retrieval control nodes may be
implemented in some embodiments. Each RG comprises a
primary node (e.g., primary ingestion node 910A, primary
storage node 920A, primary retrieval node 930A, and primary
control node 940A) and at least one non-primary node (e.g.,
non-primary ingestion node 910B, non-primary storage node
920B, non-primary retrieval node 920C, and non-primary
retrieval node 920D). The primary role may be revoked and
granted to a current non-primary in accordance with respec-
tive failover policies 912 (for ingestion nodes), 922 (for stor-
age nodes), 932 (for retrieval nodes) and 942 (for control
nodes). The failover policies may, for example, govern the
triggering conditions that are to lead to a change in primary
status, whether and how the health status of the primaries or
non-primaries is to be monitored, the number of non-prima-
ries that are to be configured in a given redundancy group, and
so on. In at least some embodiments, a single RG may be
established for multiple partitions—e.g., RG 905 may be
responsible for handling ingestion of records of partition
Sj-Pk as well as Sp-Pq. In some implementations, a node that
is designated as primary for one partition may concurrently
be designated as a non-primary for another partition. In one
embodiment, multiple nodes may be designated concurrently
as primary nodes within a given RG—e.g., the ingestion-
related workload of a given partition may be distributed
among two primary nodes, with one node designated as a
non-primary in case of a failure at either primary. The number
of'nodes instantiated in a given RG may depend on the avail-
ability or resiliency level desired for the corresponding func-
tions (e.g., on how many concurrent or overlapping failures
the group is intended to be able to withstand). In some
embodiments, in addition to or instead of being used for SMS
nodes, redundancy groups may be set up for worker nodes of
SPS processing stages. The members of a given RG may
sometimes be distributed geographically, e.g., across several
data centers, as illustrated in FIG. 10. Selected control nodes
may be configured to detect failover-triggering conditions in

US 9,276,959 B2

25

some embodiments, e.g., using heartbeat mechanisms or
other health monitoring techniques, and such control nodes
may orchestrate the failover by selecting the appropriate non-
primary node as the replacement for a failed primary, notify-
ing/activating the selected replacement node, and so on.

In some embodiments a provider network may be orga-
nized into a plurality of geographical regions, and each region
may include one or more availability containers, which may
also be termed “availability zones” herein. An availability
container in turn may comprise one or more distinct locations
or data centers, engineered in such a way (e.g., with indepen-
dent infrastructure components such as power-related equip-
ment, cooling equipment, physical security components) that
the resources in a given availability container are insulated
from failures in other availability containers. A failure in one
availability container may not be expected to resultin a failure
in any other availability container; thus, the availability pro-
file of a resource instance or control server is intended to be
independent of the availability profile of resource instances or
control servers in a different availability container. Various
types of applications may be protected from failures at a
single location by launching multiple application instances in
respective availability containers, or (in the case of some
SMSs and SPSs) distributing the nodes of a given redundancy
group across multiple availability containers. At the same
time, in some implementations, inexpensive and low latency
network connectivity may be provided between resources
(such as the hosts or compute instances used for SMS and SPS
nodes) that reside within the same geographical region, and
network transmissions between resources of the same avail-
ability container may be even faster. Some clients may wish to
specify the locations at which their stream management or
stream processing resources are reserved and/or instantiated,
e.g., at either the region level, the availability container level,
or a data center level, to maintain a desired degree of control
of'exactly where various components of their applications are
run. Other clients may be less interested in the exact location
where their resources are reserved or instantiated, as long as
the resources meet the client requirements, e.g., for perfor-
mance, high availability, and so on. Control nodes located in
one availability container (or data center) may be able to
remotely configure other SMS or SPS nodes in other avail-
ability containers (or other data centers) in some embodi-
ments—that is, a particular availability container or data cen-
ter may not need to have local control nodes to manage the
SMS/SPS nodes.

FIG. 10 illustrates a provider network environment in
which the nodes of a given redundancy group may be distrib-
uted among a plurality of data centers, according to at least
some embodiments. Provider network 1002 comprises three
availability containers 1003A, 1003B and 1003C in the
depicted embodiment. Each availability container includes
portions or all of one or more data centers—e.g., availability
container 1003A comprises data centers 1005A and 1005B,
availability container 1003B includes data center 1005C, and
availability container 1003C includes data center 1005D. A
number of different redundancy groups 1012 of SMS and/or
SPS nodes are shown. Some RGs 1012 may be implemented
entirely within a single data center, as in the case of RG
1012A located within data center 1005A. Other RGs may use
resources of multiple data centers within a given availability
container, such as RG 1012B, which spans data centers
1005A and 1005B of availability container 1003A.. Yet other
RGs may be implemented using resources spread across dif-
ferent availability containers. For example, RG 1012C uses
resources located in data centers 1005B and 1005C of avail-
ability containers 1003A and 1003B respectively, and RG

10

15

20

25

30

35

40

45

50

55

60

65

26

1012D utilizes resources at data centers 10058, 1005C and
1005D in availability containers 1003A, 1003B and 1003C
respectively. In one example deployment, if RG 1012 com-
prises one primary and two non-primary nodes, each of the
three nodes may be located in a different availability con-
tainer, thus ensuring that at least one node is highly likely to
remain functional even if large-scale failure events occur at
two different availability containers concurrently.

Console services 1078 and 1076, associated with the SMS
and SPS respectively, may provide easy-to-use web-based
interfaces for configuring stream-related settings in provider
network 1002 in the depicted embodiment. A number of
additional services, at least some of which may be used by the
SMS and/or the SPS, may be implemented in provider net-
work 1002 using resources spread over one or more data
centers or across one or more availability containers. For
example, a virtual computing service 1072 may be imple-
mented, enabling clients to utilize selected amounts of com-
puting power packaged as compute instances of various dif-
ferent capability levels, and such compute instances may be
used to implement SMS and/or SPS nodes. One or more
storage services 1070 may be implemented, enabling clients
to store and access data objects with desired data durability
levels, e.g., either via a block-device volume interface or via
a web-services interface. The storage objects may be attach-
able to, or accessible from, the compute instances of service
1072, and may be used to implement various stream persis-
tence policies at SMS storage subsystems in some embodi-
ments. In one embodiment, one or more database services
such as a high-performance key-value database management
service 1074 or a relational database service may be imple-
mented at the provider network 1002, and such a database
service may be used for storing stream data records by SMNS
storage subsystems, and/or for storing metadata of control
subsystems, ingestion subsystems, storage subsystems,
retrieval subsystems, or processing stages.

Stream Security Options

In at least some embodiments, the users of the SMS and/or
the SPS may be provided a number of security-related options
for data streams, enabling clients to select the security profiles
of'resources (e.g., virtual or physical machines) to be used for
the various functional categories such as ingestion, storage,
retrieval, processing and/or control. Such options may
include, for example, choices regarding the types of physical
locations of the resources used for various nodes (e.g.,
whether provider network facilities are to be used, or client-
owned facilities are to be used, which may have different
security characteristics than provider network {facilities),
choices regarding encryption of stream data, and/or network
isolation choices in various parts of the stream-handling
infrastructure. Some clients may be concerned about the pos-
sibility of intruders or attackers obtaining access to valuable
proprietary business logic or algorithms, for example, and
may wish to implement stream processing worker nodes
using computing devices within client-owned promises. The
types of resources to be used for implementing a set of SMS
and/or SPS nodes may be referred to herein as the “placement
destination types” for those nodes. FIG. 11 illustrates a plu-
rality of placement destination types that may be selected for
nodes of an SMS or an SPS, according to at least some
embodiments.

Placement destinations may be selected within provider
network 1102 for some types of SMS/SPS functional catego-
ries (e.g., ingestion, storage, retrieval, control or processing),
and outside provider network 1102 for other types of SMS/
SPS functional categories in the depicted embodiment.
Within provider network 1102, some resources such as com-

US 9,276,959 B2

27

pute instances, storage instances, or database instances may
be implemented using multi-tenant instance hosts 1103. Such
multi-tenant instance hosts, at each of which SMS or SPS
nodes for one or more clients may be instantiated, may form
a first category “A” of placement destination types. To avoid
having to share physical resources with other clients, some
clients may request that their SMS/SPS nodes be imple-
mented using instance hosts restricted to a single client. Such
single-tenant instance hosts may form placement category
type “B”. Single-tenant instance hosts may be preferable
from the perspective of some clients for several reasons. As
multi-tenant instance hosts may include compute instances
belonging to other clients, there may be a higher probability
of security attacks from another client’s instances in multi-
tenant instance hosts than in single-tenant instance hosts. In
addition, the “noisy-neighbor” phenomenon, in which one
client’s compute instance CI1 running on multi-tenant host
experiences a surge in workload and starts consuming a large
proportion of the host’s compute cycles or other resources,
thus potentially impacting the performance of another cli-
ent’s applications running on a different compute instance
CI2, may also be avoided when single-tenant instance hosts
are used.

Isolated virtual networks (IVNs) 1106, such as IVN 1106A
and 1106B may represent another category “C” of placement
destination types in the depicted embodiment. An IVN 1106
may be created at the request of a provider network client in
some embodiments as the logical equivalent of a private net-
work, built using provider network resources but with net-
work configuration being controlled largely by the client. For
example, the client may decide the IP addresses to be used
within an IVN 1106, without having to be concerned about
the possibility of duplicating IP addresses that may already be
in used outside the IVN. Implementing various types of SMS
and SPS nodes in one or more [VNs may add an extra level of
network security to the management and/or processing of a
client’s stream data in the depicted embodiment. In some
cases, a given client may wish to place one functional cat-
egory of SMS/SPS nodes in one IVN 1106, and a different
functional category in a different IVN. A given IVN 1106 may
comprise either single-tenant instance hosts, multi-tenant
instance hosts, or both types of instance hosts in various
embodiments. In some embodiments, another set of place-
ment destination type choices (or security profile choices)
using resources of the provider network, not shown in FIG.
11, may be available to at least some clients. In embodiments
in which clients can acquire and use compute instances from
a provider network’s virtualized computing service for
stream-related operations, the compute instances may be
used in one of two modes. In one mode, a client may provide,
to an SPS or an SMS, the executable program or programs to
be run at compute instances configured as SPS worker nodes
(or at ingestion, storage or retrieval nodes), and let the SMS or
SPS run the programs and manage the nodes. This first mode
may be referred to as a “stream service managed” mode of
using compute instances for stream operations. In the other
mode, a client may wish to run the executable programs and
manage the compute instances, with less support from the
SPS or SMS. This second mode may be referred to as a
“client-managed” mode of using compute instances for
stream operations. These two modes of operation may thus
represent additional choices with respect to client-selectable
placement destination types or security profiles. A client may
opt for the client-managed mode if, for example, the execut-
able program is likely to require debugging (including single-
stepping) that can best be performed by subject-matter
experts from the client’s organization, while the stream-ser-

25

40

45

55

28

vice-managed mode may be a reasonable choice for more
mature code that is not likely to require debugging. In some
embodiments, different pricing policies may apply to these
two modes.

A number of placement options may be supported at facili-
ties external to the provider network in the embodiment
shown in FIG. 11. For example, hosts 1160 on which SMS
libraries 1171 and/or SPS libraries 1172 are installed may be
used for stream management or processing from within client
facilities (e.g., client-owned data centers or premises) 1110A
or 1110B, with the two types of client facilities differing in
their manner of connectivity to the provider network. Client
facility 1110A is linked to provider network 1102 via at least
some shared Internet links 1151 (i.e., the network traffic of
other entities may also flow over some of the links between
client facility 1110A and the provider network 1102). In
contrast, some client facilities (such as 1110B) may be linked
to the provider network via special unshared dedicated physi-
cal links 1106 (which may sometimes be referred to as “direct
connect” links) These two different types of client premises
comprise placement destination options “D” and “E” respec-
tively in the terminology used in FIG. 11. In some embodi-
ments, portions of the SMS and/or SPS may also be imple-
mentable at third-party facilities (e.g., data centers used but
not owned or managed by clients of the SMS/SPS), and such
third-party premises may be designated as placement desti-
nation type “F”. In at least some of the client and/or third-
party premises, the SMS and/or SPS libraries may have to be
obtained from the provider network and installed on the hosts
to be used for the SMS/SPS nodes. In at least one embodi-
ment, nodes of all the different functional categories may be
implemented externally to the provider network with the help
of'the appropriate libraries. The different placement destina-
tion types may differ from one another in various security-
related aspects in different embodiments, such as the network
isolation features implemented, intrusion detection function-
ality supported, physical security policies implemented, sup-
ported encryption levels, and so on. Accordingly, each of the
various destination types may be considered to have a respec-
tive security profile, which may differ from the security pro-
file of the other placement destinations in one or more ways.
In some embodiments, clients of the SMS and/or SPS may
select respective placement destination types for different
subsystems or node sets programmatically, e.g., by sending a
request to one or more control nodes of the SMS or SPS, as
illustrated in FIGS. 124 and 125. It is noted that in some
embodiments and for certain types of stream applications,
clients may wish to control placement destination types not
just for security reasons, but also for performance and/or
functionality reasons. For example, the noisy-neighbor phe-
nomenon described above may be avoided by using dedicated
client-premise resources or single-tenant instance hosts. In
some embodiments, clients may have special-purpose or pro-
prietary hardware and/or software that they wish to use for
SPS stages or SMS nodes, where the functional capabilities or
performance levels achievable using such components cannot
easily be replicated at a provider network, or are simply not
supported at the provider network. A client may have access
at an external data center to a computer server with super-
computer-level processing capabilities, for example, which
may be able to perform SPS processing at a much higher rate
than would be possible using provider network resources
alone. Enabling a client to select the placement destinations
for various nodes may allow such special-purpose devices or
software to be used.

FIGS. 12a and 125 illustrate examples of security option
requests that may be submitted by SPS clients and SMS

US 9,276,959 B2

29

clients, respectively, according to at least some embodiments.
FIG. 12a illustrates an SPS security option request 1200 in
which a client indicates, for one or more processing stages
with identifiers 1210, the placement destinations types
(PDTs) requested for control nodes of the stage (element
1212), and the PDTs requested for worker nodes (element
1214). In at least one embodiment, clients may also be able to
submit requests to configure encryption settings for their
stream data records or stream processing results, e.g., by
requesting that data records be encrypted using a specified
algorithm or protocol prior to their transmission over various
network links, or that various control or administrative inter-
actions be encrypted. For example, in FIG. 124, the encryp-
tion settings for the stage may indicate encryption techniques
to be applied to the results of the stages processing operations,
and/or the encryption used for the communications between
the control nodes of the stage and the worker nodes of the
stage.

Similarly, in FIG. 125, a client’s SMS security option
request 1250 comprises a number of elements that indicate
the client’s security preferences for one or more streams with
specified identifiers 1252. Placement destination type prefer-
ences for ingestion nodes, storage nodes, and retrieval nodes
may be indicated in elements 1254, 1258 and 1262 respec-
tively. PDT preferences for ingestion control nodes, storage
control nodes and retrieval control nodes may be indicated by
elements 1256, 1260 and 1264 respectively. Encryption pref-
erences for data records, e.g. whether and/or how encryption
is to be implemented for the data records as they are trans-
mitted from one category of node to another, may be indicated
via element 1266. Using security option requests such as
those shown in FIGS. 12a and 125, clients may be able to
choose the locations (e.g., within the provider network or
external to the provider network) and various other security
profile components for different parts of their stream man-
agement and processing environment.

It is noted that the choice of node placement destinations
may be offered for other reasons than security in at least some
embodiments. For example, a client may wish to have some
types of SMS or SPS nodes implemented at single-tenant
hosts for performance reasons (e.g., to avoid the “noisy-
neighbor” problems indicated earlier rather than primarily for
security reasons. Placement choices may be changed in at
least some embodiments during the lifetime of a stream—
e.g., a client may initially allow SMS nodes to be instantiated
at multi-tenant instance hosts, but may wish to move at least
some subset of the nodes to single-tenant instance hosts later.
Different pricing policies may be applied to the different
security-related options in at least some embodiments—e.g.,
it may cost more to implement SMS nodes of a particular
functional category at a IVN than at multi-tenant instance
hosts outside IVNs, or it may cost more to implement SMS
nodes at single-tenant instance hosts than at multi-tenant
instance hosts.

Sequential Storage and Retrieval of Stream Records

For many types of stream applications, data records may be
received at the SMS at very high rates from a plurality of data
producers 120, and data consumers may typically wish to
access stored data records in the order in which the records
were generated. Especially in environments in which rotating
magnetic disks are used as the storage devices for stream data
records, as mentioned earlier, sequential I/O access patterns
(for both reads and writes) may have significant performance
advantages over random /O access patterns. In several
embodiments, stream-specific or partition-specific sequence
numbers may be assigned to data records as they are received
by the SMS, and sequential retrieval operations based on

10

15

20

25

30

35

40

45

50

55

60

65

30

sequence numbers may be supported. FIG. 13a illustrates
example interactions between a stream data producer and an
ingestion subsystem of an SMS, according to at least some
embodiments. The stream data producer may submit a data
record 110 to an ingestion subsystem, and in the depicted
embodiment, the ingestion subsystem may respond with a
sequence number 102 that has been chosen for the submitted
record. In at least some embodiments, an ingestion node may
obtain a portion of the sequence number from the storage
subsystem—e.g., the sequence number 102 may be deter-
mined subsequent to the storage of the received data record in
accordance with the applicable persistence policy in such
embodiments, and the storage subsystem may generate a
numerical sequence indicator of its own for the data record
and provide that indicator for inclusion in the larger sequence
number assigned to the data record by the ingestion node.

Sequence numbers may be implemented in various
embodiments to provide a stable, consistent ordering of data
records, and to enable repeatable iteration over records by
data consumers. Sequence numbers assigned to the data
records of a particular partition may increase monotonically
over time, although they need not be consecutive in at least
some implementations. In various embodiments, sequence
numbers may be assigned with at least some subset of the
following semantics: (a) sequence numbers are unique within
a stream, i.e., no two data records of a given stream may be
assigned the same sequence number; (b) sequence numbers
may serve as indexes into the stream’s data records, and may
be used to iterate over data records within a given stream
partition; (c) for any given data producer, the order in which
the data producer successfully submitted data records is
reflected in the sequence numbers assigned to the data
records; and (d) sequence numbering for data records with a
given partition key value retain the monotonically increasing
semantics across dynamic repartitioning operations—e.g.,
the sequence numbers assigned to data records with a parti-
tion key value K1 after a repartitioning may each be larger
than any of the sequence numbers that were assigned to data
records with that partition key value K1 prior to the dynamic
repartitioning. (Dynamic repartitioning is described in fur-
ther detail below with respect to FIG. 16.)

In some embodiments, a data producer may wish to influ-
ence the selection of the sequence number 102 selected for at
least some data records. For example, a data producer 120
may wish to demarcate boundaries or separators within the
assigned sequence numbers of a stream, so that it becomes
easier for data consumers of that stream to submit read
requests targeted at particular subsets of the stream. In some
implementations, the data producer 120 may submit an indi-
cation of a minimum sequence number together with a record,
and the SMS may select a sequence number in accordance
with the requested minimum that also conforms to the
sequence number semantics discussed above.

FIG. 135 illustrates example elements of a sequence num-
ber that may be generated for an ingested data record at an
SMS, according to at least some embodiments. The sequence
number may comprise four elements in the depicted embodi-
ment: an nl-bit SMS version number 1302, an n2-bit times-
tamp or epoch value 1304, an n3-bit subsequence number
1306, and an n4-bit partition number 1308. In some imple-
mentations, 128 bit sequence numbers may be used, e.g., nl,
n2, n3 and n4 may be 4, 44, 64 and 16 bits respectively. The
version number 1302 may be used simply to avoid confusion
across SMS software version rollouts, e.g., so that it is easy to
tell which version of the SMS software was used to generate
the sequence number. Version number 1302 may not be
expected to change frequently in at least some implementa-

US 9,276,959 B2

31

tions. The timestamp value 1304 may be obtained, for
example, from a local clock source or a globally accessible
clock source (e.g., a state management system of a provider
network that implements a getCurrentEpoch or getCurrent-
Time API) by an ingestion subsystem node. In at least some
implementations, an offset from a well-known point in time
(e.g., the number of seconds that have elapsed since 00:00:00
AMUTC on Jan. 1, 1970, which can be obtained by invoking
various time-related system calls in Unix™-based operating
systems) may be used for the timestamp value 1304. In some
embodiments, the subsequence number 1036 may be gener-
ated by the storage subsystem and may indicate the order in
which data records of a particular partition are written to a
storage device. Thus, in an implementation in which numer-
ous data records are received within a given second and the
timestamp values 1304 only change at approximately one-
second intervals, the subsequence numbers 1306 may serve
as indicators of the record arrival (or storage) order for data
records that happen to have arrived within the same second
and therefore are assigned the same timestamp value. The
partition number 1308 may uniquely identify a partition
within a given stream in some embodiments. In at least some
implementations in which the sequence number timestamps
indicate (at least approximately) the clock times at which the
corresponding data records were ingested, the sequence num-
bers may be used for an indexing mechanism for certain types
of time-based retrieval requests. For example, a client may
wish to retrieve stream records generated or ingested on a
particular day or during a specified time range, and the
sequence numbers may be used as keys of an implicit sec-
ondary index to retrieve the appropriate set of data records.
Thus, in at least some embodiments, the use of sequence
numbers that contain timestamps for ordered storage and
retrieval may have an additional benefit of providing a tem-
poral index into the set of stored data records.

Data records of a given partition may typically be written
(e.g., to disk) in sequence number order, often using large
sequential write operations. In some embodiments, as indi-
cated earlier, iterator-based programmatic interfaces may be
implemented to allow data consumers to read data records in
sequence number order. FIG. 14 illustrates examples of
ordered storage and retrieval of stream data records at an
SMS, according to at least some embodiments. Six data
records 110A-110F of a partition Sj-Pk (the kth partition of a
stream Sj) are shown stored in sequence number order. As
illustrated, the sequence numbers may not be consecutive in
atleast some embodiments, e.g., because the manner in which
the values are assigned to the timestamp portions 1304 or the
subsequence numbers 1306 discussed above may not always
result in consecutive values for those elements.

In the example shown in FIG. 14, a data consumer has
requested an iterator to be created, specifying a starting
sequence number “865”. In response to the request, the SMS
has initialized Iteratorl, positioned at the data record with the
nearest sequence number that is higher than or equal to the
requested starting sequence number. In this case, data record
110C with sequence number 870 has been selected as the
iterator’s starting position, as the next lower sequence (860,
assigned to data record 110B) is smaller than the starting
sequence number in the consumer’s request. The getlterator
interface may be considered the logical equivalent of a
request to set a cursor at a requested position within the
partition, and the getNextRecords interface may be used to
then read data records starting from the cursor position, e.g.,
to move the cursor along the stream in sequence number
order. In the illustrated example, a data consumer has invoked
the getNextRecords interface with parameter “iterator” set to

10

15

20

25

30

35

40

45

50

55

60

65

32

Tteratorl and “maxNumRecords” (the maximum number of
datarecords to return) set to 3. Accordingly, the SMS retrieval
subsystem returns the data records 110C, 110D and 110E in
that order to the data consumer. The iterator Iterator] may be
moved to a new position, e.g., to data record 110F, after the
getNextRecords call completes, and subsequent getNex-
tRecord invocations for the same iterator may return data
records starting with 110F. The semantics of the getlterator
call may differ in some embodiments—e.g., instead of posi-
tioning the iterator at the data record with the nearest
sequence number higher than or equal to the specified
sequenced number, the iterator may be positioned at the near-
est data record with highest sequence number equal to or
lower than the requested sequence number in some embodi-
ments. In another embodiment, clients may have to specify an
existing sequence number in the getlterator call—e.g., an
error may be returned if a record with the requested sequence
number doesn’t exist in the stream.

Partition Mappings

As described earlier, the workload related to ingestion,
storage, retrieval and processing of the records of a given
stream may be subdivided and distributed among several
nodes in various embodiments in accordance with various
partitioning and repartitioning policies. FIG. 15 illustrates an
example of a stream partition mapping 1501 and correspond-
ing configuration decisions that may be made for SMS and
SPS nodes, according to at least some embodiments. When a
particular data stream is created or initialized, e.g., in
response to a client’s invocation of a createStream API, a
partitioning policy may be activated for the stream, which
may be used to determine the partition of which any given
data record of the stream is to be considered a member. The
particular nodes of the ingestion subsystem 204, the storage
subsystem 206, the retrieval subsystem 208 and any relevant
SPS stages 215 that are to perform operations for a given data
record may be selected on the basis of the record’s partition.
In one embodiment, at least a subset of the control nodes used
for a given data record may be selected based on the partition
as well. In at least some embodiments, dynamic repartition-
ing of a data stream may be supported as part of the partition-
ing policy, e.g., in response to triggering conditions indicated
in the policy or in response to explicit requests.

In various embodiments, the partition selected for a given
data record may be dependent on a partitioning key for the
record, whose value may be supplied by the data producer
either directly (e.g., as a parameter of a write or put request),
or indirectly (e.g., the SMS may use metadata such as the
identifier or name of the data producer client, an IP address of
the data producer, or portions of the actual contents of the data
record as a partition key). One or more mapping functions
1506 may be applied to the data record partition key or
attribute 1502 to determine the data record partition identifier
1510 in the embodiment shown in FIG. 15. In one implemen-
tation, for example, a given partition identifier 1510 may
represent a contiguous range over the space of 128-bit integer
values, such that the union of the ranges for all the partitions
of the stream may cover all possible values a 128-bit integer
can assume. In such an example scenario, one simple map-
ping function 1506 may generate a 128-bit hash value from
the partition key value(s) or selected attribute value(s) of the
data record, and the partition identifier may be determined
based on the particular contiguous range within which the
hash value happens to lie. In some implementations, the con-
tiguous ranges may at least initially be equal in size; in other
implementations, different partitions may correspond to con-
tiguous ranges that may differ in size from one another. Rep-
artitioning may also result in adjustments to the range bound-

US 9,276,959 B2

33

aries in one implementation. Other partitioning functions 106
may be used in different implementations.

If the data stream undergoes dynamic repartitioning (as
discussed below in further detail), the partition to which
records with a particular key are mapped may change. Thus,
in at least some embodiments, SMS and/or SPS control nodes
may have to keep track of several different mappings that
apply to a stream during the lifetime of the stream. In some
embodiments, metadata such as a timestamp validity range
1511 or a sequence number validity range may be stored by
the control nodes for each partition mapping. The timestamp
validity range 1511 may, for example, indicate that a particu-
lar mapping M1 applies from the stream’s creation time until
time T1, that a different mapping M2 applies from T1 to T2,
and so on. When responding to read requests directed at a
stream, the retrieval nodes may have to first determine which
mapping is to be used (depending for example on the
sequence number indicated in a read request), and then use
that mapping to identify the appropriate storage nodes.

The SMS and SPS control nodes may be responsible for
mapping partitions to resources at several different granulari-
ties in at least some embodiments. For example, as shown in
example implementations 1599 of FIG. 15, in one implemen-
tation, each ingestion, storage, retrieval or processing
(worker) node may be implemented as a respective process or
a respective thread of execution within a server virtual
machine such as a Java™ Virtual Machine (JVM) or a com-
pute instance, and each JVM or compute instance may be
instantiated at a particular physical host. In some embodi-
ments, multiple JVMs may be launched within a single com-
pute instance, adding another layer of resource mapping deci-
sions. Thus, for a given partition, one or more control nodes
may select which particular resources are to be used as inges-
tion nodes 1515, storage nodes 1520, retrieval nodes 1525, or
processing stage worker nodes 1530 (e.g., nodes 1530A or
1530B for stages PS1 or PS2 respectively). The control nodes
may also determine the mappings of those nodes to servers
(such as ingestion servers 1535, storage servers 1540,
retrieval servers 1545, or processing servers 1550), and the
mappings between servers and hosts (such as ingestion hosts
1555, storage hosts 1560, retrieval hosts 1565 or SPS hosts
1570A/1570B). In some implementations, a partition map-
ping may be considered to comprise identification informa-
tion (e.g., resource identifiers) at each of various resource
granularities (e.g., node, server and host granularities) illus-
trated, an indication of the data record attributes being used as
input to the function or functions 1506, as well as the func-
tions 1506 themselves. The control servers may store repre-
sentations of the partition mapping in a metadata store, and in
some embodiments may expose various APIs (such as get-
PartitionInfo APIs) or other programmatic interfaces to pro-
vide the mapping information to data producers, data con-
sumers, or to the nodes of the SMS subsystems or the SPS.

The mappings of data records to partitions, and from the
partitions to the resources, may be further complicated in
some embodiments by various factors such as: (a) a given
node, server or host may be designated responsible for mul-
tiple partitions in some embodiments, or (b) failures or other
triggers may result in new nodes, servers or hosts being
assigned to a given partition or set of partitions. In addition, as
indicated above and described below, partition mappings for
a given stream may be modified dynamically over time while
the stream records continue to be handled by the SMS and/or
SPS nodes. As a result several versions of mapping metadata
may be retained for a given stream at least temporarily in
some embodiments, each corresponding to a different period
of time.

10

15

20

25

30

35

40

45

50

55

60

65

34

Dynamic Stream Repartitioning

FIG. 16 illustrates an example of dynamic stream reparti-
tioning, according to at least some embodiments. At time T1
of'the timeline illustrated in FIG. 16, a stream S1 is created or
initialized. A partition mapping PM1 is created for the stream
S1, and remains in effect during the time interval T1 through
T2. Three data records received by an SMS between T1 and
T2 are shown by way of example. Data record 110A
(DR110A) is submitted with a client-supplied partition key
value “Alice”, DR110B is submitted with a client-supplied
partition key value “Bill” and DR110C is submitted with a
client-supplied partition key value “Charlie”. In the initial
mapping PM1, all three data records 110A, 110B and 110C
are mapped to the same partition with a partition identifier
“P1”. For P1 data records, a single node 11 is configured to
handle ingestion, a single node S1 is configured to handle
storage, a single node R1 is configured to handle retrieval, and
a single worker node W1 is configured to handle SPS pro-
cessing. The start timestamp for a validity range of the map-
ping PM1 is set to T1.

At time T2, stream S1 is dynamically repartitioned in the
example timeline of FIG. 16. Data records continue to arrive
and be handled by the SMS and the SPS in the depicted
embodiment, irrespective of when the repartitioning occurs;
neither the SMS nor the SPS need to be taken offline. The
repartitioning may be initiated as a result of any of a number
of factors—e.g., in response to a detection of an overload
condition at an ingestion, storage, retrieval or processing
node, in response to a detection of a skew or imbalance
between workload levels at different hosts of the various
subsystems, or in response to a request from a data consumer
or a data producer client. In the depicted embodiment, a new
mapping PM2 takes effect at time T2 (or shortly after T2), as
indicated by the validity range start timestamp setting shown
for PM2. In at least some implementations, a different set of
data record attributes may be used for partitioning data
records than were used before the repartitioning. In some
cases, an additional partitioning attribute may be submitted
by the data producer (e.g., at the request of the SMS), while in
other cases the additional attribute may be generated by an
SMS ingestion node. Such additional attributes may be
referred to as “salted” attributes, and the technique of using
additional attributes for repartitioning may be referred to as
“salting”. In one example implementation, an overloaded
ingestion server may indicate to a data producer (e.g., to the
SMS client library code being executed by the data producer)
that, for repartitioning, a randomly selected small integer
value be provided in additional to the previously-used parti-
tion key. The combination of the original partition key and the
salted additional integer may subsequently be used to distrib-
ute the ingestion workload among a different set of ingestion
nodes. In some embodiments, the retrieval nodes and/or data
consumers may have to be informed regarding the additional
attributes being used for repartitioning. Such additional
attributes may not be used for repartitioning in at least some
implementations.

In the embodiment shown in FIG. 16, the new partition
mapping results in different partitions being selected for at
least some of the data records received after T2, relative to the
partition selected for the same key before T2. DR110P is
submitted after T2 with the partition key value “Alice”,
DR110Q is submitted after T2 with the partition key value
“Bill”, and DR110R is submitted after T2 with the partition
key value “Charlie”. Using the PM2 mapping, DR110P is
designated a member of partition “P4”, DR110Q is desig-
nated a member of partition “P5”, while DR110R is desig-
nated a member of partition “P6” in the illustrated example

US 9,276,959 B2

35

scenario. In the depicted embodiment, none of the example
data records shown as being received after T2 are designated
as members of the previously-used partition “P1”; instead,
completely new partitions may be used after the repartition-
ing. In some embodiments, at least some previously used
partitions may continue to be used after repartitioning. For
each ofthe new partitions P4, PS5 and P6, different nodes may
be designated for ingestion, storage, retrieval and/or process-
ing. For example, nodes 14, S4, R4 and W4 may be configured
for partition P4, nodes IS5, S5, RS and P5 may be configured
for partition P5, and nodes 16, S6, R6 and P6 may be config-
ured for partition P6. In some embodiments, the same storage
node may be used for a record with a particular partition key
or attribute after repartitioning as was used for such records
before repartitioning, but a different storage location within
that node (e.g., a different disk, a different disk partition, or a
different SSD) may be used after the repartitioning.

During at least some time period after the dynamic repar-
titioning at T2, retrieval requests may continue to be retrieved
for data records that were processed by the SMS ingestion
and/or storage subsystems prior to the repartitioning. In at
least some cases, the requested data records may have to be
retrieved based on the PM1 mapping which was in effect at
the time that the data records were ingested. Accordingly, as
indicated in FIG. 16, for the purposes of data retrieval, both
PM1 and PM2 may continue to be used for some time after
T2. In at least some implementations, data records may even-
tually be deleted from the stream as they age, and the older
partition mappings may also be discarded eventually, e.g.,
when all the corresponding data records have themselves
been deleted. In some embodiments, instead of (or prior to)
being deleted, stream records may be archived (e.g., based on
client-selected archival policies) to a different set of storage
locations or devices, such that the partition mappings used by
the SMS may still be usable to retrieve the records after
archival. In such embodiments, partition mappings such as
PM1 and PM2 may be retained for as long as they are needed
to support retrieval requests directed to the archival storage.
In some archival implementations, different retrieval
approaches may be used that do not require the stream parti-
tion mappings to be retained (e.g., new indexes may be cre-
ated for the archived data records). In some embodiments a
partition such as P2 that was being used prior to a repartition-
ing, but to which writes are no longer directed after the rep-
artitioning, may at some point after the repartitioning be
“closed” forreads—e.g., the equivalent of an “end of partition
reached” error message may be provided in response to
retrieval requests.

In some implementations, a given data stream may be
divided into numerous (e.g., hundreds or thousands) of par-
titions. Consider an example case in which a stream S1 is
initially divided into 1000 partitions, P1, P2, . .., P1000. In
the event that an overload condition corresponding to one
partition, say P7, is detected, it may be worthwhile to change
the initial mapping of data records to P7, but the mapping of
the other partitions need not need to be changed. In one
approach, two new partitions P1001 and P1002 may be cre-
ated via a repartitioning operation. Records received after the
repartitioning, whose attributes would originally (i.e., on the
basis of the original mapping) have resulted in their member-
ship in P7, may be mapped to either P1001 or P1002 after the
repartitioning, thus distributing the workload of P7 among
two partitions. The remaining partitions, e.g., P1-P6 and
P8-P1000, may not need to be modified. As only a small
subset of partitions are affected by such a repartitioning, in at
least some embodiments a combined data structure such as a
directed acyclic graph of partition entries (or a tree of parti-

10

15

20

25

30

35

40

45

50

55

60

65

36

tion entries) may be generated and stored. Each entry may
indicate a partitioning function output range, and a validity
time range (the time period during which the entry’s parti-
tioning information is to be considered valid). Assume, in the
example above, that the repartitioning involving P7 was per-
formed at time T2, while the stream S1 (and its initial map-
ping) was created at time T1. In such a scenario, the validity
time period for the entry regarding P7 would be “T1 to T2”,
the validity time periods for P1001 and P1002 would be “T2
onwards”, and the validity time periods for the remaining
partitions would be “T1 onwards”. Using such a combined
data structure may lead to a substantial reduction in the
amount of memory or storage used for partition mapping
metadata in at least some implementations. In the above
example, a split of partition P7 into two new partitions was
discussed. In at least some implementations, partitions may
also be merged during repartitioning—e.g., two adjacent par-
titions for which relatively few retrieval requests were
received, or relatively few records were submitted, may be
merged into a single partition. For any given point in time, the
partition to which a data record belongs may be determined
unambiguously using the partitioning function and the valid-
ity time range information. Over time, the combined data
structure may evolve as more splits and/or merges are per-
formed, but the total space required for the partitioning meta-
data may (depending of course on how often splits occur, and
how many partitions are affected by the splits on average) not
increase dramatically. In contrast, in a different implementa-
tion, each time a repartitioning occurs, the entire set of
unchanged metadata for a stream may be replicated and com-
bined with entries for the partitions affected by repartitioning.
The storage and memory requirements for partition mapping
metadata may increase at a much faster rate in the latter
implementation, especially if the older mappings may have to
be retained for at least some time after repartitioning as
described above.

In at least some embodiments in which sequence numbers
that comprise timestamp values (such as the timestamp value
1304 shown in FIG. 135) are used, a special type of sequence
number transition may be implemented for dynamic reparti-
tioning. Assume by way of example that a timestamp-based
sequence number scheme, similar to that shown in FIG. 135,
is being used for a stream S1, in which new timestamp values
are generated every second for inclusion in the sequence
numbers. In at least some implementations in which dynamic
repartitioning is supported, the sequence numbers assigned
after the dynamic repartitioning may all use a different set of
timestamp values (starting with a selected initial timestamp
value corresponding to the repartition event) than were used
before the dynamic repartitioning. For example, if the times-
tamp value in use at the time the dynamic repartitioning is
committed (i.e., put into effect) was Tk, any new sequence
numbers issued after the commit may be required to use
timestamp values Tk+1 onwards. Since sequence number
values encode the timestamp value in at least some of their
higher-order bits in the scheme used in FIG. 135, ensuring
that repartition events correspond to timestamp boundaries as
described may in turn simplify the bookkeeping involved in
identifying the mappings to be used in response to a retrieval
request. Thus, in such implementations, when a retrieval
request specifying a particular sequence number is received,
the timestamp value may be extracted from that sequence
number, and it may be easily determined whether the post-
repartitioning mapping should be used, or the pre-repartition-
ing mapping should be used. If the extracted timestamp value
is lower than the initial timestamp selected for the repartition,
the pre-repartitioning mapping may be used, and if the

US 9,276,959 B2

37

extracted timestamp value is equal to or higher than the initial
timestamp value selected for the reparation, the post-reparti-
tioning mapping may be used.

Methods for Stream Management and Processing

FIG. 17 is a flow diagram illustrating aspects of operations
that may be performed to support respective sets of program-
matic interfaces for stream record ingestion and stream
record retrieval, according to at least some embodiments. As
shown in element 1701, a request to create or initialize a data
stream may be received, e.g., from an SMS client or a data
producer client. The initial partition mapping to be used for
the stream may be determined (element 1704), e.g., the func-
tion(s) to be used to identify the partition to which a particular
data record belongs, and the input parameters to be used for
the function(s), may be identified based on a partitioning
policy. As mentioned earlier, control components of the SMS
may be responsible for receiving and responding to stream
creation requests in various embodiments. The manner in
which stream creation and initialization (as well as other
control-plane operations) are implemented may differ from
one embodiment to another. In one embodiment, for example,
a redundancy group of control servers may be established,
and the primary control server of that redundancy group may
respond to a stream creation request by generating and storing
the appropriate metadata for a new stream (e.g., the initial
partition mapping, the initial sets of nodes of the ingestion,
storage and retrieval, and so on) in a persistent storage loca-
tion. Responses to subsequent queries regarding the stream
(e.g., arequest from a front-end ingestion node regarding the
back-end node responsible for a given partition) may be gen-
erated by the primary control server using the stored meta-
data. In another implementation of the SMS control-plane
functionality, stream configuration metadata may be stored in
a database that is directly accessible by at least some nodes of
the ingestion, storage, or retrieval subsystems. After a stream
has been created and initialized, data-plane operations such as
record submission, storage and retrieval may commence, and
may be handled by respective components of the correspond-
ing subsystems, typically without additional interactions with
the control components.

In some embodiments, data producers may be required to
submit explicit partition keys with write requests, while in
other embodiments, the inputs to be used for the partitioning
functions may be determined based on metadata associated
with the write requests, such as the identity of the data pro-
ducers, the IP addresses from which the data records are
received, or from the contents of the data records themselves.
In at least one implementation, clients may optionally supply
partition identifiers in the data record submissions, and addi-
tional partitioning functions may not be required in such an
implementation.

A number of different factors may be taken into account
when determining or configuring the initial set of nodes for
ingestion, storage and retrieval functions for the stream (ele-
ment 1707). For example, the partition mapping itself (which
may determine how many partitions the stream is divided
into, and the relative expected sizes of the partitions), infor-
mation about the expected ingestion rates and/or retrieval
rates if such information is available, durability/persistence
requirements for the stream data records, and/or high avail-
ability requirements for the various subsystems (which may
result in the setting up of redundancy groups similar to those
illustrated in FIGS. 9 and 10) may influence the number and
placement of the nodes of the different subsystems. In addi-
tion, in embodiments in which clients may indicate placement
destination type preferences for various categories of nodes
(as illustrated in FIGS. 11, 12a¢ and 125), such preferences

40

45

38

may also play a role in determining the resources to be used
for the SMS and/or SPS nodes. In at least some embodiments,
respective pools of nodes capable of performing ingestion,
storage and/or retrieval functions may be set up in advance,
and control components may assign selected members of
such pools to each new stream that is created. In other
embodiments, at least in some cases new ingestion, storage or
retrieval nodes may have to be instantiated when a stream is
created or initialized.

Attheingestion nodes in the depicted embodiment, records
may be received via any of a set of programmatic interfaces
implemented for data record submission (element 1710),
including for example in-line submission interfaces (in which
the data is included in the submission requests) and by-refer-
ence submission interfaces (in which an address is provided
in the submission requests, from which the data can be
retrieved by the SMS ingestion nodes or the SMS storage
nodes, e.g., using web service requests or other interfaces).
Any of a number of different types of programmatic inter-
faces may be provided in different embodiments for each of
the ways of submitting records, e.g., respective application
programming interfaces (APIs) may be supported for in-line
versus by-reference submission, web pages or web sites may
be established, graphical user interfaces may be imple-
mented, or command-line tools may be developed. In at least
some embodiments, the SMS may assign a sequence number
to each ingested record, e.g., indicative of the order in which
the records are ingested or stored, and the sequence numbers
may be usable for retrieval requests by data consumers. Atthe
retrieval subsystem nodes, record retrieval requests may be
received via any of a set of implemented programmatic
retrieval interfaces, and contents of the requested data records
may be provided in response (element 1713). For non-se-
quential access, the interfaces may include, for example, getl-
terator (requesting an iterator to be instantiated at a position
selected within a partition based on a sequence number indi-
cated in the getlterator invocation) or getRecordWithSequen-
ceNumber (to obtain a data record with a specified sequence
number). For sequential access, interfaces such as getNex-
tRecords (requesting a number of records in order, starting
from a current position of an iterator or from a specified
sequence number) may be implemented. In at least some
embodiments, different retrieval interfaces may have difter-
ent billing rates associated with them—e.g., the per-record
billing rates for sequential retrieval may be set lower than the
per-record billing rates for non-sequential retrieval. The dif-
ferent submission interfaces may also have different billing
rates in some embodiments—e.g., by-reference submissions
may cost more per record than inline submissions.

Over time, control nodes or specialized billing servers may
collect usage metrics for the different programmatic inter-
faces implemented at the various subsystems of the stream
management service (element 1716). The metrics may
include, for example, invocation counts of the different pro-
grammatic interfaces, the total number of records ingested or
retrieved (which may differ from invocation counts for at least
some interfaces such as getNextRecords that can be used to
retrieve multiple records with a single invocation), the total
amount of data ingested or retrieved, and so on. Billing
amounts to be charged to the clients that own the stream, or
clients that produce and/or consume data from the stream,
may optionally be generated based at least in part on the usage
metrics and the respective billing rates associated with the
programmatic interfaces (element 1719). In at least some
embodiments, the billing activities may be asynchronous
with respect to the stream ingestion/retrieval operations—

US 9,276,959 B2

39

e.g., a bill may be generated at the end of a monthly billing
period based on the metrics collected during the month.

FIG. 18a is a flow diagram illustrating aspects of opera-
tions that may be performed to configure stream processing
(SPS) stages, according to at least some embodiments. As
shown in element 1801, programmatic interfaces may be
implemented enabling clients to configure a number of pro-
cessing stages for stream data records. To configure a particu-
lar stage, for example, a client may indicate the processing
operation(s) to be performed on partitioned stream data
records at the stage, the distribution policy for the output of
the processing operations, as well as other parameters such as
the identity of the input streams from which the data to be
processed is to be obtained. In some embodiments, process-
ing operations at SPS stages may be required to be idempo-
tent. In other embodiments, non-idempotent operations may
also be supported for at least some stages. If the processing to
be performed at a given stage is non-idempotent, a client may
still be able to obtain recovery-related benefits of idempo-
tency in some embodiments by configuring worker nodes to
periodically flush the output of the operations to some persis-
tent external location, recording when the flush operations
were performed with respect to the record retrieval sequence,
and later configuring replacement worker nodes to replay the
flush operations during recovery. In at least some embodi-
ments, clients may be able to configure directed acyclic
graphs (DAGs) or other graphs of processing stages, with
several different states operating on stream data in parallel,
and results of some stages being used as input streams for
other stages. In some embodiments, one or more ephemeral
rather than persistent streams may be created between differ-
ent stages, e.g., the data records output from one stage need
not necessarily be stored on persistent storage devices before
being fed as input to a different stage.

Any of a number of different recovery policies may be
implemented for SPS stages in some embodiments, including
for example a checkpoint-based recovery policy or a best-
effort recovery policy. In one embodiment, a client may use a
programmatic interface to select recovery policies for differ-
ent SPS stages. At stages for which a checkpoint-based recov-
ery is used, worker nodes may be configured to store progress
records or checkpoints at intervals, indicating how far along
in a stream partition they have reached (for example, the
sequence numbers of the most recently processed records
may be stored as indicators of the progress). The progress
records may be used later during recovery operations after
failures, as described below with reference to FIG. 19. In a
best-effort recovery policy, progress records need not be
stored, and replacement worker nodes configured in response
to a failure may simply process new data records as they are
received. Within a given SPS stage graph or workflow, in
some embodiments different recovery policies may be
applied to different stages.

An SPS control server may receive, e.g., via one of the
programmatic interfaces indicated in element 1801, an indi-
cation of the idempotent operation Opl to be performed at a
particular stage PS1 of a stream S1 in accordance with a
partitioning policy PPol1, with the results of the processing to
be distributed in accordance with output distribution descrip-
tor DDescl (element 1804). The number of worker nodes to
be configured for state PS1, and the virtual or physical
resources needed for the nodes, may be determined, e.g.,
based on various factors such as the Ppoll, the complexity of
the idempotent operations Opl, and the performance capa-
bilities of the resources to be used for the worker nodes
(element 1807).

10

15

20

25

30

35

40

45

50

55

60

65

40

The worker nodes may then be instantiated and configured
(element 1810), e.g., as processes or threads at selected vir-
tual or physical machine resources. In one simple implemen-
tation, for example, one worker node may initially be
assigned for each partition of S1. A given worker node may be
configured to (a) receive data records from the appropriate
subset of S1°s retrieval nodes, (b) perform Opt on the received
data records, (c) optionally, e.g., based on the recovery policy
for PS1, store progress records/checkpoints indicating which
set of partition records have been processed, and (d) transmit
output to destinations indicated by DDesc1 (e.g., as inputs to
intermediate persistent or ephemeral streams, or directly to
other processing stages or storage systems). It is noted that at
least in some embodiments, the SPS processing may not
necessarily generate any output that has to be transmitted
elsewhere on an ongoing basis. For example, some SPS appli-
cations may simply serve as temporary repositories of data
records, and/or may implement query interfaces enabling
users to view the data records. Such an application may man-
age its own output, e.g., output may be generated in response
to received queries and not in accordance with a distribution
descriptor. A logging-related SPS application may retain the
last day’s log records collected from a large-scale distributed
system, for example, enabling clients to view logging data for
debugging or analysis purposes. Accordingly, in some
embodiments, output distribution descriptors need not be
specified for at least some stages of an SPS, for at least some
streams, or for at least some partitions. The worker nodes may
then initiate retrieving and processing data records as per their
respective configuration settings (element 1813). The SPS
control nodes may monitor the health status (e.g., using
responsiveness checks such as a heartbeat protocol) of the
worker nodes, as well as various other metrics such as the
resource utilization levels at the resources being used for the
worker nodes (element 1816) in at least some embodiments.
The information collected from the worker nodes may be
used to determine whether a failover is required, e.g., if a
worker node should be replaced and a recovery policy imple-
mented as described below.

In some embodiments, an installable SPS client library
may be provided to those clients that wish to implement SPS
worker nodes at client-owned premises, and/or at client-se-
lected resources of the provider network. The client library
may also allow SPS clients to select the extent to which they
wish to use various control-plane features of an SPS managed
service, such as health monitoring functions, automated
workload monitoring and balancing, security management,
dynamic repartitioning and the like. FIG. 185 is a flow dia-
gram illustrating aspects of operations that may be performed
in response to invocations of components of a client library
for configuration of stream processing worker nodes, accord-
ing to at least some embodiments. As shown in element 1851,
an SPS client library may be provided (e.g., via download
from a web site of a multi-tenant SPS managed service con-
figurable to perform the kinds of operations illustrated in FIG.
18a). The library may include a number of executable com-
ponents, and/or components that can be linked to client appli-
cations. Some library components may enable clients to
select, register with the SPS managed service, or specify
desired properties of, various worker nodes at which stream
processing operations of one or more SPS stages are to be
performed. For example, one client may wish to use their own
set of compute instances implemented at a virtual computing
service of a provider network for the worker nodes, while
another client may wish to use computing devices located at
the client’s own data center (such as special purpose devices
not supported by the provider network) for processing stream

US 9,276,959 B2

41

records. Clients may bring worker nodes online on an as-
needed basis at their own premises, or using compute
instances of the virtual computing service, as desired. In
addition to or instead of such an on-demand instantiation of
worker nodes, in some embodiments clients may preconfig-
ure pools of potentially re-usable worker nodes that can be
deployed when needed. In some implementations, a library
component may be executed or invoked to allow a client to
register, with the SPS managed service, a particular process
or thread instantiated by the client as a worker node of a
specified stage, for which subsequent control-plane opera-
tions may be handled by the SPS managed service. In one
embodiment, the client may also be able to select from among
different levels of control-plane responsibilities to be handled
by the SPS managed service for the worker nodes—for
example, one client may wish to use their own custom mod-
ules to monitor worker node health, while another client may
wish to utilize the SPS managed service for monitoring
worker node health and taking the appropriate actions if a
failure is detected.

The SPS managed service may receive an indication that a
particular client wishes to use the client library for configur-
ing worker nodes and/or control plane operations of a par-
ticular SPS stage PS1 (element 1854). (PS1 itself may be
designed using programmatic interfaces included in the
library, or using programmatic interfaces exposed by the SPS
managed service similar to the web-based interface illus-
trated in FIG. 4.) The client may also indicate the streams
whose data is to be retrieved for use as input by PS1. Option-
ally, in at least some embodiments, the client may indicate
control-plane settings for PS1, e.g., whether the client wants
to use the service’s health monitoring capabilities for the
nodes, or is willing to use custom health monitoring tools
(element 1857). Depending on the preferences indicated by
the client, one or more nodes of the SMS and/or SPS to be
configured for the client’s use may be determined (element
1860). Network connectivity may be established between the
client’s worker nodes to the SMS/SPS nodes, and/or other
configuration operations may be performed to enable the flow
of'data records and processing results as desired. Data records
may be provided to SP1 worker nodes upon receiving
retrieval requests, and desired control-plane operations (if
any were requested by the client) may be performed as
needed. It is noted that at least in some embodiments, a
similar approach enabling clients to control the extent to
which they wish to use the control-plane functionality of
various subsystems of an SMS managed service may also or
instead be implemented.

FIG. 19 is a flow diagram illustrating aspects of operations
that may be performed to implement one or more recovery
policies for stream processing, according to at least some
embodiments. As shown in element 1901, an SPS control
node may determine that triggering criteria for replacing a
particular worker node have been met—e.g., the worker node
may have become unresponsive or unhealthy, the workload
levels of the current node may have reached a threshold value
for failover, the number of errors detected at the worker node
may have exceeded a threshold, or some other unexpected
state of a worker node may be identified. A replacement
worker node may be identified or instantiated (element 1904).
Insome embodiments, a pool of available worker threads may
be set up, from which one may be selected as a replacement,
for example, or a new thread or process may be launched.

Ifabest-effort recovery policy is to be used at the SPS stage
atwhich the particular worker node was active (as determined
in element 1907), the replacement worker node may simply
start processing additional data records as they become avail-

20

25

40

45

50

42

able (element 1916), e.g., no record of the replaced worker
node’s progress need be examined. If a checkpoint-based
recovery policy is to be used, an indication of the location
(e.g., a storage device address or a URL) at which the replace-
ment worker node may access the progress records stored by
the replaced worker node may be provided (element 1910).
The replacement worker node may retrieve the most recent
progress record stored by the replaced node, and use the
progress record to determine the set of data records on which
the replacement worker node should perform the idempotent
operations of the stage (element 1913). In such a checkpoint-
based recovery policy, depending on the duration between the
last progress record and the time at which the replacement
worker node is instantiated, as well as on the rate at which the
replaced worker node had processed additional records sub-
sequent to the progress record being stored, some number of
data records may be processed more than once. If the opera-
tions being performed are idempotent, such repeat operations
may have no negative effects in at least some embodiments.
After the replacement worker node has performed the repeat
recovery operations based on the earlier-stored progress
record, in at least some embodiments the replacement worker
thread may store its own progress record indicating that
recovery is complete, and may start normal worker thread
operations on newly-received data records (element 1916).

FIG. 20 is a flow diagram illustrating aspects of operations
that may be performed to implement a plurality of security
options for data streams, according to at least some embodi-
ments. As shown in element 2001, one or more programmatic
interfaces may be implemented that enable clients to select
from a variety of security options for data stream manage-
ment and processing, including for example placement des-
tination type options for the nodes of different functional
categories (e.g., ingestion, storage, retrieval, processing or
control nodes). The placement destination types may differ
from one another in various aspects of their security profiles.
The physical location of the resources to be used for the SMS
or SPS nodes may differ from one destination type to another
in some embodiments. For example, resources such as
instance hosts located at provider network data centers may
be used for the nodes, or resources at client-owned facilities
may be used, or third-party resources may be used. The net-
work isolation levels or other networking characteristics may
differ from one destination type to another in at least some
embodiments—e.g., some SMS or SPS nodes may be instan-
tiated within isolated virtual networks, or at client-owned
facilities connected to the provider network via dedicated
isolated physical links. In one embodiment, clients may indi-
cate that certain types of SMS or SPS nodes are to be estab-
lished at single-tenant instance hosts of a provider network,
instead of using multi-tenant instance hosts that may also be
available. In at least some embodiments, various types of
encryption options may also be selectable via the security-
related programmatic interfaces.

A client’s security profile choices or preferences regarding
nodes of one or more functional categories for a stream S1
may be received via the security-related programmatic inter-
faces. For example, the client may select one security profile
for nodes of functional category FC1 (e.g., the client may
wish to implement SPS worker nodes at client-owned pre-
mises) and a different security profile for nodes of a different
functional category FC2 (e.g., the client may be willing to
implement SMS ingestion nodes or storage nodes at provider
network data centers) (element 2004). In some cases, a client
may decide to set up nodes of all the different functional
categories with the same security profile. The SMS and/or the
SPS may define default placement destination types for the

US 9,276,959 B2

43

various functional categories in some embodiments—e.g.,
unless a client indicates otherwise, nodes of all the functional
categories may be set up within isolated virtual networks of'a
provider network.

The nodes of the different functional categories may then
be configured based on the client’s preferences for security
profiles and/or locations (or based on default settings for the
functional categories for which the client does not provide
preferences) (element 2007). The configuration may involve,
for example, selecting the appropriate physical hosts or
machines, and instantiating the appropriate compute
instances, virtual machines, processes and/or threads for the
nodes of the different functional categories, and establishing
the appropriate network connections between the nodes. In
some embodiments, executable library components for the
different stream management and processing functions may
be provided for installation at hosts external to the provider
network as part of the configuration.

According to at least some embodiments, encryption mod-
ules may be activated at one or more categories of the nodes,
e.g., in accordance with the client’s expressed encryption
preferences or based on default encryption settings (element
2010). The nodes of the various functional categories may
then be activated, so that the stream data is ingested, stored,
retrieved and/or processed as desired by the client (element
2013).

FIG. 21 is a flow diagram illustrating aspects of operations
that may be performed to implement a partitioning policy for
data streams, according to at least some embodiments. As
shown in element 2101, a partitioning policy may be deter-
mined for a data stream. The policy may comprise, for
example, an initial mapping of data records to partitions
based on keys supplied by data producers or based on various
attributes of the submitted data records, as well as one or more
triggering criteria for repartitioning the data stream. In some
embodiments, for example, a hash function may be applied to
the partition key or keys, yielding a 128-bit integer hash
value. The range of possible 128-bit integers may be divided
into N contiguous sub-ranges, each representing one of N
partitions of the stream. The number of partitions and/or the
relative sizes of the sub-ranges may vary from one stream to
another in some embodiments. In at least some embodiments,
the client on whose behalf a stream is being configured may
provide input regarding the partitioning scheme to be used,
e.g., the number of partitions desired, or desired characteris-
tics of the partitioning function to be used. In at least one
embodiment, clients may provide the partition identifiers or
names for some subset or all of the submitted data records.

As the data records of the stream are received, their respec-
tive partitions may be determined based on the supplied keys
and/or other attributes, and the appropriate set of ingestion,
storage and retrieval nodes may be selected for the identified
partition (element 2104). In at least some embodiments,
respective sequence numbers may be generated for the data
records, e.g., indicative of the sequence in which the records
of a given partition were received (element 2107). The
sequence numbers may comprise a number of elements in
some implementations, such as timestamp values (e.g., the
number of seconds elapsed since a well-known epoch such as
00:00:00 UTC Jan. 1, 1970), subsequence values obtained
from a storage subsystem, version numbers of the SMS soft-
ware, and/or the partition identifiers. The sequence numbers
may be provided to the data producers in some embodiments,
e.g., to acknowledge the successful ingestion of the submitted
data records. The sequence numbers may also be used by data
consumers to retrieve the data records of a stream or a parti-
tion in ingestion order in some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

44

The data records may be stored in sequence number order
in at least some embodiments at the storage nodes to which
they are directed based on the partitioning policy (element
2110). In embodiments in which rotating magnetic disks
storage devices are used, sequential writes may typically be
used to save the received data records to disk, thereby avoid-
ing disk seek latencies. In at least some implementations,
non-volatile buffers may be used as write caches prior to
storing the records to disk, e.g., to further decrease the prob-
ability of disk seeks. In response to requests for reads of
multiple data records ordered by sequence number (e.g., invo-
cations of getNextRecords or similar interfaces), the data
records may later be read using sequential reads from the
storage devices (element 2113).

FIG. 22 is a flow diagram illustrating aspects of operations
that may be performed to implement dynamic repartitioning
of data streams, according to at least some embodiments. As
shown in element 2201, a determination may be made (e.g., at
a control component of an SMS or an SPS) that a stream is to
be dynamically repartitioned. A number of different trigger-
ing conditions may lead to a decision to repartition a stream,
such as a detection of overload at one or more of the ingestion,
storage, retrieval, processing or control nodes, or a detection
of an imbalance in the workload levels of different nodes, or
a repartitioning request that may be received from a client
(e.g., adata producer or data consumer). Client repartitioning
requests may include specific details of the requested repar-
titioning in some implementations, such as various param-
eters of the modified mapping to be generated (e.g., the num-
ber of partitions to be added or removed, which specific
partitions should be combined or split, and so on). In one
implementation, a client repartitioning request may indicate a
problem state (such as aload imbalance) that the client wishes
to resolve, and the SMS or SPS may be responsible for trans-
lating the description of the problem state into the appropriate
repartitioning operation. In some cases, instead of requesting
a repartitioning or describing a problem state, a client may
specify the triggering criteria to be used for repartitioning. A
determination of a change to a data durability requirement of
the data stream may trigger repartitioning in some embodi-
ments, which may for example result in the selection of a
different set of storage devices or a different storage technol-
ogy for the stream records. A detection of a change to a usage
pattern of the data stream (e.g., the rate at which data records
are being produced or consumed) may also lead to reparti-
tioning in some cases, and may also lead to the use of a
different storage technique or a different set of storage
devices that is more appropriate for the changed usage pat-
tern. For example, a decision to reparation may be based on
the determination that, for the rate of reads and writes
expected for a given partition or an entire stream, SSDs may
be a more appropriate storage technology than rotating mag-
netic disks. Scheduled or impending software and/or hard-
ware version changes may trigger repartitioning in one
embodiment. In some cases, pricing or billing concerns may
trigger repartitioning, as when a client indicates a budget
constraint that can be met more effectively using a different
partitioning approach or a different approach to storage.
Changed performance targets may also trigger repartitioning
in at least some embodiments. In the embodiment depicted in
FIG. 22, an initial timestamp value (such as an offset in
seconds from 00:00:00 UTC Jan. 1, 1970, an epoch value
typically available via a system call in several operating sys-
tems) to be used for sequence numbers assigned after the
repartitioning may be selected (element 2204). In some
implementations, a global state manager implemented at a
provider network may support a getEpochValue API, for

US 9,276,959 B2

45

example, enabling various components of the SMS and/or
SPS to obtain consistent timestamp values to be used for
sequence number generation. In other implementations, other
time sources may be used—e.g., an SMS or SPS control node
may be designated to provide consistently-ordered timestamp
values to other components, or a local system call invocation
may be used. In some embodiments, the timestamp values
need not necessarily correspond to the wall clock time at any
particular host—e.g., a monotonically increasing integer
counter value may simply be used.

A modified partition mapping, different from the mapping
in use at the time of the repartitioning decision, may be
generated for the stream (element 2207). The changed map-
ping may map data records with a particular partition key to a
different partition than data records with the same key were
mapped to before the repartitioning in at least some embodi-
ments. Some partitions (typically, heavily-used partitions)
may be split, while other (typically lightly-used) partitions
may be merged, depending on the triggering conditions for
the repartitioning and/or on observed workload metrics. A
different partitioning function may be used after the reparti-
tioning than before the repartitioning in some embodi-
ments—e.g., a different hash function, or a different approach
to the subdivision of hash function results into partitions may
be used. In some implementations, for example, in which the
partitions correspond to contiguous ranges of 128-bit inte-
gers, the 128-bit integer space may be divided into a different
set of sub-ranges after the repartitioning. In at least some
embodiments, new sets of ingestion, storage, retrieval, pro-
cessing or control nodes may be assigned to the newly-cre-
ated partitions. In some implementations a space-efficient
combined data structure may be used to represent both the
initial mapping and the modified mapping (element 2208).
For example, a directed acyclic graph or tree structure may be
stored, in which each entry contains an indication of a parti-
tioning function output range (e.g., the range of a partitioning
hash function’s results that correspond to a given partition)
and a validity time range, so that only the records correspond-
ing to modified partitions need to be altered as a result of a
repartitioning. Entries for partitions that remain unaltered
during a repartitioning may not need to be modified in the data
structure. The new nodes may be configured to implement the
modified partition mapping (element 2210). In at least some
embodiments, since retrieval requests for data records stored
on the basis of the earlier mapping may continue to be
received for at least some time, the previous nodes and the
previous mapping may be retained for some time. When a
read request specifying a particular sequence number or
timestamp is received (element 2213), a determination may
be made (e.g., at a control node or at a retrieval node) as to
whether the read request is to be satisfied using the new
partition mapping or the previous partition mapping. The
selected mapping may then be used to identify the appropriate
storage node from which the requested data is to be obtained.

FIG. 23 is a flow diagram illustrating aspects of operations
that may be performed to implement an at-least-once record
ingestion policy for data stream records, according to at least
some embodiments. As shown in element 2301, one or more
programmatic interfaces may be implemented to enable cli-
ents to select a record ingestion policy for a data stream from
among several ingestion policy options, including for
example (a) an at-least-once policy in accordance with which
a record submitter is to submit a record one or more times
until a positive acknowledgement is received or (b) a best-
effort ingestion policy in accordance with which acknowl-
edgements are not provided for at least some record submis-
sions. Some data producing clients may not be as concerned

10

15

20

25

30

35

40

45

50

55

60

65

46

about the potential loss of a small fraction of their records as
others, and may therefore opt for the best-effort ingestion
approach. In some implementations, even for streams config-
ured for best-effort ingestion, the SMS may still provide
acknowledgements for some subset of the data records, or
may even attempt to provide acknowledgements for all the
data records, even though the best-effort policy does not
require acknowledgements for every data record.

A request may be received via one of the programmatic
interfaces, indicating a particular ingestion policy to be used
fora specified stream (element 2304). Ingestion nodes may be
instantiated in accordance with the partitioning policy in
effect for the stream (element 2307). When one or more
submissions of the same data record are received at an inges-
tion node (element 2310), different actions may be taken
dependent on the ingestion policy in effect. If the at-least-
once ingestion policy is in use (as determined in element
2313), an acknowledgement may be sent to the data producer
for each of the one or more submissions, but the data record
may be saved only once at the storage subsystem (2316). (It is
noted that in accordance with the persistence policies in effect
for the stream, N replicas of a given record may be stored in
some cases, but if a given data record is submitted M times,
the replicas may be generated only for one of the submis-
sions—i.e., the total number of record replicas stored would
still be N, and not NxM.) If a best-effort ingestion policy were
in effect (as also detected in element 2313), the data record
may still be saved once at a storage device, but no acknowl-
edgement need be sent to the data producer (element 2319). In
at least some embodiments, client billing amounts may
optionally be determined based at least in part on the inges-
tion policy selected (element 2322). As noted earlier, in some
embodiments, two versions of an at-least-once ingestion
policy may be supported. In one version, similar to that illus-
trated in FIG. 23, the SMS may be responsible for de-dupli-
cating data records (i.e., ensuring that data is stored at the
SMS storage subsystem in response to only one of a set of two
or more submissions). In a different version of at-least-once
ingestion, duplication of data records by the SMS may be
permitted. The latter approach may be useful for stream appli-
cations in which there are few or no negative consequences of
data record duplication, and/or for stream applications that
perform their own duplicate elimination.

FIG. 24 is a flow diagram illustrating aspects of operations
that may be performed to implement a plurality of persistence
policies for data streams, according to at least some embodi-
ments. As shown in element 2401, one or more programmatic
interfaces enabling clients to select a persistence policy for
stream data records from among a plurality of persistence
policies may be implemented. The persistence policies may
differ from each other in any of various respects: e.g., (a) the
number of replicas to be saved may differ (e.g., N-replica vs.
2-replica vs. single-replica policies may be supported) (b)
storage location/device types to be used may differ (e.g.,
rotating magnetic disk vs. SSD vs. RAM vs. a database ser-
vice or a multi-tenant storage service) and/or (c) the policies
may differ in the expected extent of resilience to large-scale
failures (e.g., multi-data-center vs. single-data-center poli-
cies may be supported). A request may be received indicating
a client’s selection of a particular persistence policy for a
specified stream (element 2404). In some embodiments, the
persistence policy selected by a client may result in the use of
different storage location types or device types for respective
partitions of a given stream. In one embodiment, the SMS
rather than the client may select the storage location type or
device types, either at the stream level or at the partition level.
Clients may indicate data durability goals and/or perfor-

US 9,276,959 B2

47

mance goals (such as desired read or write throughput or
latency) in some embodiments when selecting the persistence
policy in some embodiments, and these goals may be used by
the SMS to select the appropriate storage devices types or
locations. For example, if low latencies are desired, SSDs
may be used instead of rotating magnetic disks to store the
data records of one or more partitions or streams.

A set of ingestion nodes may be determined or configured
to receive the data records of the selected stream from data
producers, and a set of storage nodes may be configured to
implement the selected persistence policy (element 2407).
When a data record is received at an ingestion node (element
2410), one or more copies of the data record may be stored,
based on the selected persistence policy, at selected storage
devices by the storage nodes responsible for the partition to
which the data record belongs (element 2413). In at least
some implementations, billing amounts may optionally (and/
or asynchronously) be determined based on the specific per-
sistence policies selected by the client (element 2416).
Decentralized Workload Management for Stream Processing

In some embodiments, a substantial portion or all of the
control-plane functionality of an SPS may be implemented in
a decentralized manner, e.g., by the worker nodes within a
given SPS stage coordinating various control operations
(such as partition assignment to the worker nodes, responses
to dynamic repartitioning, health monitoring and/or load bal-
ancing) via a shared data structure such as a database table. A
given worker node W1 may inspect entries within the shared
data structure to determine, for example, which partitions of
the stage’s input streams (if any) are currently not being
processed. If such a partition P1 is found, W1 may update an
entry in the shared data structure to indicate that W1 will
perform the stage’s processing operations on P1’s records.
Other worker nodes may learn that W1 is assigned to process
P1 records, and may therefore assign different partitions to
themselves. Worker nodes may periodically or occasionally
submit queries to the SMS control plane to determine the
current partition maps in effect for the input stream, and
update the shared data structure to indicate map changes (e.g.,
as aresult of repartitioning) as necessary. Load balancing and
other operations may also be coordinated via the shared data
structure in various embodiments, as described below. In
some such decentralized implementations, dedicated control
nodes may not be required for the SPS, thereby reducing the
overhead required to implement SPS workflows. Such decen-
tralized SPS control plane implementations may be espe-
cially popular with budget-conscious customers that utilize
SPS client libraries to implement various aspects of stream
processing, e.g., at compute instances within the provider
network that are assigned to the customers, or at locations
outside the provider network. Decentralized SPS control-
plane techniques may also be used in embodiments in which
client libraries are not used, e.g., when all the resources used
for the SMS and SPS are configured within a provider net-
work. An SPS at which the worker nodes implement some or
all of the SPS control plane functions for at least some pro-
cessing stages may be referred to herein as a “decentralized-
control SPS”.

FIG. 25 illustrates an example of a stream processing sys-
tem in which worker nodes of a processing stage coordinate
their workloads using a database table, according to at least
some embodiments. Within a decentralized-control SPS
2590, two stages 215A and 215B are defined, each with a
respective set of worker nodes. Stage 215A comprises worker
nodes 2540A and 25408, while stage 415B comprises worker
nodes 2540K and 2540L. For each stage 215A and 215B, a
corresponding partition assignment (PA) table 2550 is cre-

25

40

45

50

55

48

ated at a database service 2520, such as PA table 2550A for
stage 215A and PA table 25508 for stage 215B. The PA table
2550 for a given stage may be created during stage initializa-
tion in some embodiments, e.g., in response to an invocation
of'a client library component or function. Each PA table 2550
may be populated with an initial set of entries or rows repre-
senting unassigned partitions of the input streams of the stage
(i.e., partitions to which no worker node is currently
assigned). Example columns or attributes of the PA table
entries are shown in FIG. 26 and described below. The worker
nodes 2540 (e.g., processes or threads launched at compute
instances or other servers) that are launched for the stage may
be granted read/write access to the stage’s PA table. Reads
and writes directed to the PA tables from the worker nodes are
represented in FIG. 25 by arrows 2564 A, 25648, 2564K and
2564L for worker nodes 2540A, 25408, 2540K and 2540L
respectively.

A given worker node 2540 may be configured to select, by
examining the entries in the PA table, a particular partition on
which to perform the processing operations of the stage. In
one implementation, the worker node 2540A may scan the
entries in the PA table 2550A until it finds an entry of an
unassigned partition Pk, and may attempt to assign the parti-
tion Pk to itself by updating the entry, e.g., by inserting the
worker node’s identifier into one of the columns of the entry.
Such an insertion may be considered analogous to locking the
partition by the worker node. Depending on the type of data-
base service being used, different approaches to managing
potentially concurrent writes to PA table entries (e.g., by two
or more worker nodes that happen to identify an unassigned
partition at close to the same time) may be used.

In one embodiment, a non-relational multi-tenant database
service of a provider network may be used, which supports
strong consistency and conditional write operations without
necessarily supporting relational database transaction seman-
tics. A conditional write operation may be used in such a case
for the updates by the worker nodes. Consider an example in
which a column “worker-node-ID” is used to indicate the
identifier of the particular worker node assigned to a partition
in the PA table, and that the column’s value is set to “null” if
no worker node is assigned to the partition. In such a scenario,
a worker node with identifier WID1 may request the logical
equivalent of the following: “if, in the entry for partition Pk,
worker-node-ID is null, then set worker-node-ID for that
entry to WID1”. If such a conditional write request succeeds,
the worker node with identifier WID1 may assume that par-
tition Pk is assigned to it. The worker node may then start
retrieving data records of partition Pk, e.g., using record
retrieval interfaces of SMS retrieval subsystem 206, as indi-
cated by arrows 2554 (e.g., arrows 2554 A, 25548, 2554K and
2554L for worker nodes 2540A, 25408, 2540K and 2540L
respectively), and performing the processing operations on
the retrieved records. If the conditional write fails, the worker
node may resume a search for a different unassigned parti-
tion. In other embodiments, database services (such as rela-
tional databases) that support transactions may be used, and
the transaction functionality may be used to implement the
equivalent of the conditional write operations—e.g., to
ensure that only one of a plurality of concurrent (or near-
concurrent) attempts to assign a partition to a worker node
succeeds, and that the worker nodes involved in such concur-
rent attempts are reliably informed of their success or failure.
Synchronization techniques that rely neither on conditional
writes nor on transaction support may be used in some
embodiments. In some implementations a database service
may not be used; instead, alocking service may be used by the

US 9,276,959 B2

49

worker nodes to acquire exclusive access for updates to the
entries in persistent data structures analogous to the PA tables.

Other worker nodes 2540 may examine the entries in the
PA table, determine which partitions are unassigned, and may
eventually succeed in assigning one or more partitions to
themselves. In this way, the processing workload for the
partitions of the stage’s input stream or streams may eventu-
ally be distributed among themselves by the stage’s worker
nodes.

The initial partition mapping of any given stream may
change over time, e.g., as a result of the dynamic repartition-
ing operations described earlier. Accordingly, in the embodi-
ment depicted in FIG. 25, one or more of the worker nodes
2540 may occasionally (or in response to triggering condi-
tions as described below) submit requests to the SMS control
subsystem 210 of their stage’s input stream(s) to obtain the
current partition metadata. In some implementations, such
requests may comprise invocations of SMS control plane
APIs, such as the invocations of a getStreamInfo API indi-
cated by arrows 2544 A, 25448, 2544K, and 25441.. The SMS
control subsystem may, for example, respond with an up-to-
date list of partitions of the stream, and/or other details such
as the validity time periods of the partitions. If the partition
information provided by the SMS control subsystem 210
does not match the entries in the PA table, the PA table may be
modified by the worker node, e.g., by inserting or deleting
entries for one or more partitions. Such requests 2554 to the
SMS control subsystem may typically be much less frequent
than the record retrieval requests 2554 (and/or the database
read or write operations 2564) in at least some embodiments,
as indicated by the label “infrequent” of arrow 2554 A. For
example, once it is assigned a partition, a worker node may
typically keep retrieving and processing that partition’s data
records until the partition data is fully consumed (e.g. if the
owner of the stream closes the stream, or if the partition is
closed as a result of dynamic repartitioning), or until some
other low-probability circumstance is encountered (e.g., if a
different worker node requests a transfer of the partition due
to detected load imbalance, as discussed below). Thus, the
overhead associated with invoking the getStreamInfo or simi-
lar APIs may typically be quite small in various embodi-
ments, even if a substantial amount of information is provided
in response to any given invocation (as might be the case if
hundreds or thousands of partitions are defined for a stage’s
input stream).

Some of the key workload-management operations of a
decentralized-control SPS environment may thus be summa-
rized as follows in the embodiment depicted in FIG. 25: (a)
selecting, based at least in part on accessing a database table
by a first worker node of a stream processing stage, a particu-
lar partition of an input data stream of the stream processing
stage on which to implement a set of processing operations
defined for that stage; (b) writing, into a particular entry
stored in the table, an indicator of an assignment of the par-
ticular partition to the first worker node; (c) retrieving, by the
first worker node, records of the particular partition using
programmatic record retrieval interfaces implemented at a
multi-tenant stream management service; (d) implementing,
by the first worker node, the set of processing operations on
the records of the particular partition; (e) determining, by a
second worker node, based at least in part on the particular
entry in the particular database table, that the first worker
node is assigned to perform the set of processing operations
on the particular partition; and (f) selecting, by the second
worker node a different partition on which to perform the set
of processing operations. If and when a worker node deter-
mines that no more records remain in a partition assigned to it,

10

15

20

25

30

35

40

45

50

55

60

65

50

the worker node may request metadata on the input stream
from the SMS control subsystem, and may update the PA
table if the metadata indicates a discrepancy.

FIG. 26 illustrates example entries that may be stored in a
partition assignment table 2550 used for workload coordina-
tion, according to at least some embodiments. As shown,
table 2550 may comprise four columns: partition identifier
column 2614, assigned worker node identifier column 2618,
a worker node health indicator column 2620, and a workload
level indicator column 2622. Other column sets may be
implemented in other implementations—for example, a col-
umn that indicates a partition creation time or a partitioning
function output value range may be used in some embodi-
ments, or the workload level indicator column may not be
used.

It is noted that the partition list 2650 maintained by the
SMS control subsystem (e.g., as part of the partition entry
tree, graph or other combined data structure described earlier)
may, at least at some points in time, include more partitions
than are included in the PA table 2550 in some embodiments.
In the depicted example, the partition list 2650 includes par-
titions P1, P2, P3, P4 and PS5, of which P1 and P4 are shown
in a closed state as a result of repartitioning, while P2, P3 and
PS5 are shown as active (i.e., partitions whose data records are
currently being retrieved and processed). The PA table 2650
includes entries for the active partitions in the depicted
embodiment, and does not include entries for the closed par-
titions (which may have been deleted by worker nodes when
they obtained responses to getStreamInfo invocations after
the repartitioning took place, for example). At least in some
implementations, not all the currently open partitions of the
stream may necessarily have respective entries in the PA table
ata given point in time; instead, for example, only a subset of
those partitions that are currently assigned or being processed
may be represented.

Inthe example scenario illustrated in FIG. 26, partitions P1
and P2 are assigned to worker nodes with identifiers W7 and
W3 respectively, while P5 is currently unassigned. The health
indicator column 2620 may store different types of values in
different implementations. In some implementations, the
worker nodes may be responsible for periodically (e.g., once
every N seconds, or according to a schedule based on some set
of heuristics) updating the contents of the health indicator
columns in the PA entries of their assigned partitions to indi-
cate that the worker nodes are active and able to continue their
retrieval and processing operations. In FIG. 26, an indication
of the most recent time that the worker node for that entry
updated the health indicator column (“last-modified-time”)
may be stored—e.g., worker W7 is shown as having modified
the entry at 02:24:54 and 53 seconds on Dec. 1, 2013. Other
worker nodes may use the last-modified time value to deter-
mine whether the assigned worker node is healthy or not in
some embodiments—e.g., if X seconds or minutes have
elapsed, as defined in a failover policy for the stage, the
assigned worker node may be assumed to be unhealthy or
inaccessible and the partition may be reassigned. In other
implementations, a counter may be used as a health indicator
(e.g., if the counter value has not changed in Y seconds, the
assigned worker node may be deemed a candidate for
failover), or a “last-read-time” value indicating when the
assigned worker node last read the entry may be used.

In at least some embodiments, a workload level indicator
value 2622 may be stored in the entry, e.g., by the assigned
worker node, such as the number of records processed during
some recent time interval (e.g., in the five minutes prior to the
last-modified-time), recent performance-related metrics of
the worker node such as CPU utilization, memory utilization,

US 9,276,959 B2

51

storage utilization and the like. Such workload level indicator
values may be used in some embodiments by the worker
nodes to determine whether load imbalances exist, as
described below with respect to F1G. 29, and to take actions in
response to detected imbalances. For example, a worker node
Wk may determine that its workload level is above the aver-
age workload level, and may un-assign one of its partitions, or
may request a dynamic repartitioning; alternatively, the
worker node Wk may determine that its workload is too low
relative to that of other worker nodes or partitions, and may
assign additional partitions to itself. Thus, using the columns
of the PA table indicated in FIG. 26, worker nodes may
perform some of the same types of control-plane functions in
the depicted embodiment that may typically be performed by
dedicated SPS control nodes in centralized-control SPS
implementations

FIG. 27 illustrates aspects of operations that may be per-
formed by worker nodes of a stream processing stage to select
partitions on which to perform processing operations, accord-
ing to at least some embodiments. As shown in element 2701,
a PA table PAT1 may be initialized at a database service for a
decentralized-control SPS processing stage SP1. The table
may be created, for example, when an SPS client library
component is invoked, e.g., from a host at a client facility or
from a compute instance at a provider network data center.
The client library may be used for various purposes: for
example, to provide an executable component such as a JAR
(Java™ archive) file for the particular processing operations
to be implemented at the SPS stage, to indicate a label (such
as a program name, a process nhame or a compute instance
name) that can be used to identify the worker nodes, to indi-
cate the stream to be used as the input for the stage, to indicate
the output destinations (if any) of the stage, and so on. PAT1
may initially be populated in some embodiments with entries
or rows for at least a subset of the partitions {P1, P2, ...}
defined for the input stream(s) of the stage. In some imple-
mentations, the table may be left empty initially, and one or
more of the worker nodes may populate the table with rows
for unassigned partitions, e.g., as a result of obtaining parti-
tion metadata from an SMS control subsystem. A initial set of
worker nodes {W1, W2, . . . } may be started up, e.g., at
various compute instances within a provider network or at
client-owned computing devices (element 2704). The worker
nodes may be granted read and write access to PAT1 in the
depicted embodiment.

As the worker nodes come online, they may each access
PAT1 to try to find partitions that are unassigned. For
example, worker node W1 may examine PAT1 and find that
partition P1 is unassigned (element 2707). W1 may then
update P1’s entry in PAT1, e.g., using a conditional write
request or a transactional update request depending on the
type of database service being used, to indicate that P1 is
assigned to W1 (element 2710). Having updated the table, W1
may initiate retrieval of data records of P1 using SMS
retrieval subsystem interfaces (element 2713), and may per-
form the processing operations of the stage PS1 on the
retrieved records.

Meanwhile, at some point in time, a different worker node
W2 may access PAT1 in its own attempt to find unassigned
partitions (element 2716). W2 may determine, based on W1’s
earlier update, that P1 is already assigned, but that a different
partition P2 is not assigned. In some embodiments, a deter-
mination by W2 that the current assignee worker node of P2
is unhealthy or inactive (e.g., based on the health indicator
column in P2’s entry) may also lead W2 to select P2. Thus, in
at least some embodiments, either an unassigned state, or a
determination of an unhealthy state of a current worker node

10

15

20

25

30

35

40

45

50

55

60

65

52

may be used to select a given partition for reassignment (or
initial assignment). W2 may then attempt to update PAT1 to
assign P2 to itself (element 2719). Ifthe update succeeds, W2
may start retrieving P2 records using SMS retrieval interfaces
(element 2722) and performing the appropriate processing
operations defined for the stage.

As mentioned earlier, the worker nodes in a decentralized-
control SPS may (typically infrequently) obtain partition
mapping information from the SMS, and use such informa-
tion to update the PA table if necessary. FIG. 28 illustrates
aspects of operations that may be performed by worker nodes
of'a stream processing stage to update a partition assignment
table based on information obtained from a stream manage-
ment service control subsystem, according to at least some
embodiments. As shown in element 2801, during worker
node initialization or in response to various triggering condi-
tions such as the closing of one of the partitions assigned to it,
a worker node W1 may submit a request to the SMS control
subsystem to obtain the latest or current partition list, or the
active partition list. In some implementations, a getStream-
Info or similar API may be invoked for this purpose. Other
triggering conditions may be used in some embodiments:
e.g., the worker nodes may each be configured to obtain fresh
partition lists after ratndom amounts of time, or in response to
unexpected drops or increases in workload levels. The parti-
tion list returned by the SMS may be compared with the
entries in the PA table for the partition (element 2807). If a
discrepancy is found (e.g., if there is some partition in the
freshly-obtained partition list that is not in the PA table, or if
there is an entry in the PA table that is not in the SMS’s list),
the worker node may insert or delete entries in the PA table to
resolve the discrepancy in the depicted embodiment (element
2810). (Additional coordination may be required if an entry
that is targeted for deletion currently has an assigned worker
node in some implementations—e.g., the assigned worker
node may be notified, either directly or via the PA table itself.)

After the discrepancy is rectified, or if no discrepancy was
detected, the worker node W1 may select a set of partitions on
which it should perform the stage’s processing operations
(element 2813), and may update the PA table accordingly. In
some cases, depending on the triggering condition that led to
the partition list being retrieved, W1 may already have one or
more partitions assigned to it, and may not need to make
changes to its assignments or update the PA table. W1 may
then proceed to retrieve the data records of its assigned par-
tition or partitions, and process the records, without having to
interact with the SMS control subsystem or changing the
number of entries in the PA table (element 2816). Eventually,
when a triggering condition is detected (e.g., when the
equivalent of an “end of partition reached” response is
received to a retrieval request, indicating that the a partition is
closed), W1 may again send a request to the SMS control
subsystem for fresh partition information, and the operations
of'elements 2801 onwards may be repeated.

FIG. 29 illustrates aspects of load balancing operations that
may be performed by worker nodes of a stream processing
stage, according to at least some embodiments. As shown in
element 2901, a worker node W1 may determine that a load
balancing analysis is to be performed on its stage upon a
detection of any of a variety of triggering conditions, such as
a detection of a high resource utilization level, or based on a
configurable schedule. W1 may examine the entries in the PA
table (element 2904) to determine various workload metrics
for the stage. Such metrics may include the average number of
partitions assigned to worker nodes, the average workload
level of the worker nodes or of different partitions (in embodi-

US 9,276,959 B2

53

ments in which workload level indicators are saved in the
table), a range or distribution of the per-worker-node work-
load, and so on.

W1 may then compare its own workload (based for
example on the number of partitions assigned to W1, and/or
the per-partition workload level indicators) to some or all of
the metrics. In general, any of three types of conclusions may
be drawn: that W1 is overloaded, that W1 is under-loaded, or
that W1’s workload is neither too high nor too low. Workload
levels that are “too high” or “too low” may be defined by
policies selected by the clients on whose behalf the stage is
configured in some embodiments, or using some default set of
heuristics in other embodiments. If W1 determines that its
workload is too low (element 2907), e.g., below some mini-
mum-load threshold T1, a busier or more highly-loaded
worker node Wk may be identified (element 2910). W1 may
then initiate a process of transferring one or more partitions
Pm from Wk to itself (element 2913), e.g., by attempting to
modify the Pm entry in the PA table, requesting such a modi-
fication (which may result in a notification being generated
for Wk), or by requesting Wk directly.

If W1 determines that its workload is too high (element
2916), e.g., above a maximum-threshold T2, it may identify
one or more of its assigned partitions Pn to relinquish (i.e., to
release for assignment by other worker nodes) (element
2919). W1 may then modify the appropriate entries in the PA
table, e.g., by removing its identifier from the assignee col-
umn ofthe entry for Pn (element 2922). [f W1’s workload was
neither too high nor too low, or after W1 has taken the kinds
of actions described above to increase or decrease its work-
load, W1 may resume processing records of the partitions to
which it is assigned (element 2925). Operations correspond-
ing to elements 2901 onwards may be repeated when and if
conditions triggering another load balancing analysis are met.
It is noted that in the operations illustrated in FIG. 29, W1 is
shown as initiating workload changes only when it detects an
imbalance with respect to its own workload. In other embodi-
ments, W1 may initiate rebalancing actions if it detects imbal-
ances among other worker nodes than itself—e.g., if it deter-
mines that W2 has a much lower workload level than W3. In
some implementations, W1 may request or initiate dynamic
repartitioning (e.g., by invoking a repartitionStream SMS
API such as that shown in FIG. 3, or its equivalent) if and
when it detects workload imbalances. In some embodiments,
the kinds of operations illustrated in FIG. 29 may be per-
formed by a newly-configured worker node—e.g., when new
nodes are added to a stage after the stage has already been in
operation for some time, the new nodes may indirectly notify
the existing nodes of their presence by requesting reassign-
ment of partitions from heavily loaded existing nodes. In
some embodiments, decentralized control techniques similar
to those described above for SPS worker nodes may also or
instead be used at one or more SMS subsystems, e.g., the
nodes of the ingestion, storage or retrieval subsystems may
coordinate their workloads using shared data structures simi-
lar to the PA tables.

It is noted that in various embodiments, operations other
than those illustrated in the flow diagrams of FIG. 17-FI1G. 24
and FIGS. 27-29 may be used to implement the stream man-
agement service and/or the stream processing functionality
described above. Some of the operations shown may not be
implemented in some embodiments or may be implemented
in a different order, or in parallel rather than sequentially. It is
also noted that, with respect to each of the SMS and SPS
functions for which programmatic interfaces are supported in
various embodiments, any combination of one or more tech-
niques may be used for implementing the interfaces, includ-

20

30

40

45

54

ing the use of web pages, web sites, web-services APIs, other
APIs, command-line tools, graphical user interfaces, mobile
applications (apps), tablet apps, and the like.

Use Cases

The techniques described above, of establishing scalable
partitioning-based, dynamically configurable managed
multi-tenant services for collection, storage, retrieval and
staged processing of stream data records may be useful in a
number of scenarios. For example, large provider networks
may comprise thousands of instance hosts implementing ser-
vice instances of a number of different multi-tenant or single-
tenant services for tens of thousands of clients simulta-
neously. Monitoring and/or billing agents installed on the
various instances and hosts may rapidly generate thousands
of metric records, which may need to be stored and analyzed
to produce accurate billing records, to determine effective
provisioning plans for the data centers of the provider net-
work, to detect network attacks, and the like. The monitoring
records may form an input stream to an SMS for scalable
ingestion and storage, and SPS techniques described may be
implemented for the analysis of the collected metrics. Simi-
larly, applications to collect and analyze large numbers of log
records from numerous log sources (e.g., application logs
from the nodes of a distributed application, or system logs
from the hosts or compute instances at a data center) may also
be able to utilize SMS and SPS functionality. In at least some
environments, the SPS processing operations may comprise a
real-time ETL (Extract-Transform-Load) processing opera-
tion (i.e., an operation that transforms received data records in
real time for loading into a destination, instead of doing the
transformation offline), or a transformation of data records
for insertion into a data warehouse. Using an SMS/SPS com-
bination for loading data into a data warchouse in real time
may avoid the delays that are typically required to clean and
curate data from one or more data sources, before the data can
be inserted into a warehouse for analysis.

A number of different “big data” applications may also be
built using the SMS and SPS techniques. For example, the
analysis of trends in various forms of social media interac-
tions may be performed efficiently using streams. Data col-
lected from mobile phones or tablet computers, such as loca-
tion information of the users, may be managed as stream
records. Audio or video information, collected for example
from a fleet of monitoring cameras may represent another
category of streaming data set that could be collected and
processed in a scalable manner, potentially helping prevent
attacks of various kinds Scientific applications that require
analysis of ever-growing data sets, collected for example
from weather satellites, ocean-based sensors, forest-based
sensors, astronomical telescopes, may also benefit from the
stream management and processing capabilities described
herein. The flexible policy-based configuration options and
pricing options may help different types of users customize
the streaming functionality to suit their specific budgets and
data durability/availability requirements.

Tlustrative Computer System

In at least some embodiments, a server that implements a
portion or all of one or more of the technologies described
herein, including the techniques to implement the compo-
nents of the SMS subsystems (e.g., the ingestion, storage,
retrieval and control subsystems), as well as the SPS worker
and control nodes, may include a general-purpose computer
system that includes or is configured to access one or more
computer-accessible media. FIG. 30 illustrates such a gen-
eral-purpose computing device 9000. In the illustrated
embodiment, computing device 9000 includes one or more
processors 9010 coupled to a system memory 9020 via an

US 9,276,959 B2

55

input/output (1/0) interface 9030. Computing device 9000
further includes a network interface 9040 coupled to 1/O
interface 9030.

In various embodiments, computing device 9000 may be a
uniprocessor system including one processor 9010, or a mul-
tiprocessor system including several processors 9010 (e.g.,
two, four, eight, or another suitable number). Processors 9010
may be any suitable processors capable of executing instruc-
tions. For example, in various embodiments, processors 9010
may be general-purpose or embedded processors implement-
ing any of a variety of instruction set architectures (ISAs),
such as the x86, PowerPC, SPARC, or MIPS ISAs, or any
other suitable ISA. In multiprocessor systems, each of pro-
cessors 9010 may commonly, but not necessarily, implement
the same ISA. In some implementations, graphics processing
units (GPUs) may be used instead of, or in addition to, con-
ventional processors.

System memory 9020 may be configured to store instruc-
tions and data accessible by processor(s) 9010. In various
embodiments, system memory 9020 may be implemented
using any suitable memory technology, such as static random
access memory (SRAM), synchronous dynamic RAM
(SDRAM), nonvolatile/Flash-type memory, or any other type
of memory. In the illustrated embodiment, program instruc-
tions and data implementing one or more desired functions,
such as those methods, techniques, and data described above,
are shown stored within system memory 9020 as code 9025
and data 9026.

In one embodiment, I/O interface 9030 may be configured
to coordinate /O traffic between processor 9010, system
memory 9020, and any peripheral devices in the device,
including network interface 9040 or other peripheral inter-
faces such as various types of persistent and/or volatile stor-
age devices used to store physical replicas of data object
partitions. In some embodiments, I/O interface 9030 may
perform any necessary protocol, timing or other data trans-
formations to convert data signals from one component (e.g.,
system memory 9020) into a format suitable for use by
another component (e.g., processor 9010). In some embodi-
ments, [/O interface 9030 may include support for devices
attached through various types of peripheral buses, such as a
variant of the Peripheral Component Interconnect (PCI) bus
standard or the Universal Serial Bus (USB) standard, for
example. In some embodiments, the function of /O interface
9030 may be split into two or more separate components,
such as a north bridge and a south bridge, for example. Also,
in some embodiments some or all of the functionality of I/O
interface 9030, such as an interface to system memory 9020,
may be incorporated directly into processor 9010.

Network interface 9040 may be configured to allow data to
be exchanged between computing device 9000 and other
devices 9060 attached to a network or networks 9050, such as
other computer systems or devices as illustrated in FIG. 1
through FIG. 29, for example. In various embodiments, net-
work interface 9040 may support communication via any
suitable wired or wireless general data networks, such as
types of Ethernet network, for example. Additionally, net-
work interface 9040 may support communication via tele-
communications/telephony networks such as analog voice
networks or digital fiber communications networks, via stor-
age area networks such as Fibre Channel SANs, or via any
other suitable type of network and/or protocol.

In some embodiments, system memory 9020 may be one
embodiment of a computer-accessible medium configured to
store program instructions and data as described above for
FIG. 1 through FIG. 29 for implementing embodiments of the
corresponding methods and apparatus. However, in other

10

15

20

25

30

35

40

45

50

55

60

65

56

embodiments, program instructions and/or data may be
received, sent or stored upon different types of computer-
accessible media. Generally speaking, a computer-accessible
medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computing device 9000 via I/O inter-
face 9030. A non-transitory computer-accessible storage
medium may also include any volatile or non-volatile media
such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM,
SRAM, etc.), ROM, etc., that may be included in some
embodiments of computing device 9000 as system memory
9020 or another type of memory. Further, a computer-acces-
sible medium may include transmission media or signals such
as electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a wireless
link, such as may be implemented via network interface 9040.
Portions or all of multiple computing devices such as that
illustrated in FIG. 30 may be used to implement the described
functionality in various embodiments; for example, software
components running on a variety of different devices and
servers may collaborate to provide the functionality. In some
embodiments, portions of the described functionality may be
implemented using storage devices, network devices, or spe-
cial-purpose computer systems, in addition to or instead of
being implemented using general-purpose computer systems.
Theterm “computing device”, as used herein, refers to at least
all these types of devices, and is not limited to these types of
devices.

CONCLUSION

Various embodiments may further include receiving, send-
ing or storing instructions and/or data implemented in accor-
dance with the foregoing description upon a computer-acces-
sible medium. Generally speaking, a computer-accessible
medium may include storage media or memory media such as
magnetic or optical media, e.g., disk or DVD/CD-ROM, vola-
tile or non-volatile media such as RAM (e.g. SDRAM, DDR,
RDRAM, SRAM, etc.), ROM, etc., as well as transmission
media or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as net-
work and/or a wireless link.

The various methods as illustrated in the Figures and
described herein represent exemplary embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit of
this disclosure. It is intended to embrace all such modifica-
tions and changes and, accordingly, the above description to
be regarded in an illustrative rather than a restrictive sense.

What is claimed is:

1. A system, comprising:

one or more hardware computing devices configured to:

implement a set of programmatic interfaces enabling

clients of a provider network to select from among a
plurality of security-related options for data records
of a specified stream, wherein the plurality of secu-
rity-related options include one or more placement
destination type options for nodes of one or more
functional categories of a plurality of functional cat-
egories that includes: (a) control nodes, (b) record
ingestion nodes, (c) record storage nodes, (d) record
retrieval nodes and (e) record processing nodes;

US 9,276,959 B2

57

receive, via a programmatic interface of the set of pro-
grammatic interfaces, one or more requests from a
client of the provider network, wherein one of the one
or more requests from the client specifies one of the
plurality of security-related options comprising at
least one of the one or more placement destination
type options selected for a particular stream, wherein
the at least one placement destination type option
instructs that one or more nodes of a first functional
category of the plurality of functional categories asso-
ciated with the particular stream are to be configured
at one or more data centers of the provider network,
and instructs that one or more nodes of a second
functional category of the plurality of functional cat-
egories associated with the particular stream are to be
configured at a facility external to the provider net-
work;
in response to the one or more requests from the client of
the provider network:
configure one or more nodes of the first functional
category at one or more hardware computing
devices of one or more data centers of the provider
network;
initiate a configuration of one or more nodes of the
second functional category at one or more hard-
ware computing devices of the facility external to
the provider network; and
activate one or more record ingestion nodes assigned
to the data stream to begin collecting data records
of the particular stream.

2. The system as recited in claim 1, wherein the first func-
tional category comprises record storage nodes, and the sec-
ond functional category comprises record processing nodes.

3. The system as recited in claim 1, wherein the plurality of
security-related options comprises an option to configure one
or more nodes of a specified functional category within an
isolated virtual network associated with the client and imple-
mented at the provider network.

4. The system as recited in claim 1, wherein the provider
network implements a multi-tenant computing service utiliz-
ing a plurality of instance hosts, wherein at least some
instance hosts of the plurality of instance hosts are each
configurable to instantiate compute instances on behalf of a
plurality of clients, and wherein the plurality of security-
related options comprises an option to instantiate one or more
nodes of a specified functional category of nodes on an
instance host that hosts no more than one client.

5. The system as recited in claim 1, wherein the plurality of
security-related options comprises an option to encrypt, at
nodes of one or more functional categories, data records prior
to transmission of the data records over a network link.

6. A method, comprising:

performing, by one or more hardware computing devices:

implementing a set of programmatic interfaces enabling
aclient of a data stream management service to select,
for a specified stream, a placement option for one or
more functional categories of nodes of the stream
management service, wherein the stream manage-
ment service utilizes nodes of a plurality of functional
categories including at least (a) data ingestion nodes
and (b) data processing nodes;

receiving, via a programmatic interface of the set of
programmatic interfaces, a request from the client of
the data stream management service, wherein the
request specifies a placement option selected for a
particular stream, wherein the placement option
specified in the request from the client instructs the

25

30

35

40

45

50

55

60

65

58

stream management service to configure one or more

nodes of a first functional category of the plurality of

functional categories using resources with a first secu-

rity profile, and instructs the stream management ser-

vice to configure one or more nodes of a second func-

tional category of the plurality of functional

categories using resources with a different security

profile;

in response to the request from the client of the data

stream management service:

initiating a configuration of one or more nodes of the
first functional category at a first selected resource
with the first security profile, wherein the first
selected resource is implemented by one or more
first hardware computing devices; and

initiating a configuration of one or more nodes of the
second functional category at a second selected
resource with the different security profile, wherein
the second selected resource is implemented by one
or more second hardware computing devices.

7. The method as recited in claim 6, wherein the plurality of
functional categories include one or more of: (a) data storage
nodes, (b) data retrieval nodes, and (c) control nodes.

8. The method as recited in claim 6, wherein in accordance
with the request, the first selected resource is implemented at
a data center of a provider network, and wherein the second
selected resource is implemented at a facility external to the
provider network.

9. The method as recited in claim 8, wherein the facility
external to the provider network is linked to the provider
network via an unshared physical network link dedicated for
use by a particular client.

10. The method as recited in claim 8, wherein the first
functional category comprises data ingestion nodes, and the
second functional category of nodes comprises data process-
ing nodes.

11. The method as recited in claim 6, wherein the second
selected resource comprises one or more of: (a) a hardware
device with a capability that is not supported at the provider
network or (b) a software module with a capability that is not
supported at the provider network.

12. The method as recited in claim 6, wherein in accor-
dance with the request, the first selected resource is imple-
mented at a first compute instance of a virtual computing
service of the provider network, and wherein the second
selected resource is implemented at a second compute
instance of the virtual computing service, wherein operations
of the first functional category are performed using a client-
provided executable program whose execution at the first
compute instance is managed by the stream management
service, and wherein operations of the second functional cat-
egory are managed by the client.

13. The method as recited in claim 6, wherein, in accor-
dance with the request, the first selected resource is imple-
mented within an isolated virtual network of the client imple-
mented at the provider network.

14. The method as recited in claim 6, wherein the provider
network implements a multi-tenant computing service utiliz-
ing a plurality of instance hosts, wherein at least some
instance hosts of the plurality of instance hosts are each
configurable to instantiate compute instances on behalf of a
plurality of clients, wherein, in accordance with the request,
the first selected resource comprises an instance host that is
configured to instantiate compute instances on behalf of no
more than one client.

15. The method as recited in claim 6, further comprising
performing, by the one or more computing devices:

US 9,276,959 B2

59

implementing a programmatic interface to enable a client
to request an encryption, at nodes of one or more func-
tional categories, of data records prior to transmission of
the data records over a network link.

16. The method as recited in claim 6, further comprising
performing, by the one or more computing devices:

providing a library of executable modules installable at one

or more computing devices at a facility external to the
provider network to implement at least a subset of func-
tionality of nodes of one or more functional categories of
the plurality of functional categories.

17. The method as recited in claim 6, wherein said initiat-
ing the configuration of one or more nodes of the first func-
tional category comprises initiating the configuration of at
least one node at each of a plurality of data centers in accor-
dance with an availability requirement.

18. A non-transitory computer-accessible storage medium
storing program instructions of a service that when executed
on one or more computer hardware processors:

receive, from a client ofthe service, a configuration request

comprising a security option selected for a particular
data stream for which nodes of a plurality of functional
categories are to be configured, wherein the plurality of
functional categories comprises at least a data ingestion
category and a data retrieval category, wherein the secu-
rity option indicates a security profile of a resource to be
used for one or more nodes of at least one functional
category of the plurality of functional categories;

in response to the request from the client of the service,

configure, in accordance with the request comprising the
selected security option, a node of a first functional
category of the at least one functional category at a

10

15

20

25

30

60

resource with a first security profile, wherein the
resource is implemented by one or more hardware com-
puting devices; and

initiate a configuration of a node of a second functional

category of the plurality of functional categories at a
different resource with a different security profile,
wherein the different resource is implemented by one or
more different hardware computing devices.

19. The non-transitory computer-accessible storage
medium as recited in claim 18, wherein the plurality of func-
tional categories include one or more of: (a) a data storage
category, (b) a data processing category, or (c) a control
category.

20. The non-transitory computer-accessible storage
medium as recited in claim 18, wherein the resource used for
the node of the first functional category is located within a
provider network, and the resource used for the node of the
second functional category is located outside the provider
network.

21. The non-transitory computer-accessible storage
medium as recited in claim 18, wherein in accordance with
the configuration request, one or more nodes of the first
functional category are configured at a computing device
within an isolated virtual network implemented at a provider
network.

22. The non-transitory computer-accessible storage
medium as recited in claim 18, wherein in accordance with
the configuration request, at least one node of the first func-
tional category is instantiated at a particular instance host of
amulti-tenant virtual computing service, wherein the particu-
lar instance host is configured to instantiate compute
instances on behalf of no more than one client.

#* #* #* #* #*

